Konstanta-7B / README.md
Inv's picture
Adding Evaluation Results (#1)
48928a2 verified
|
raw
history blame
5.13 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - merge
  - mergekit
  - lazymergekit
  - maywell/PiVoT-0.1-Evil-a
  - mlabonne/NeuralOmniBeagle-7B-v2
  - roleplay
  - rp
  - not-for-all-audiences
base_model:
  - maywell/PiVoT-0.1-Evil-a
  - mlabonne/NeuralOmniBeagle-7B-v2
model-index:
  - name: Konstanta-7B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 70.05
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 87.5
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 65.06
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 65.43
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 82.16
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 71.04
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-7B
          name: Open LLM Leaderboard

Konstanta-7B

Konstanta-7B is a merge of the following models using LazyMergekit:

This is a test merge that is supposed to improve Kunoichi by merging it with new Beagle model and PiVoT Evil, which both show good performance. Even though the model's name is in Russian, it is not really capable of properly using it, as it was not the main goal of the model.

🧩 Configuration

merge_method: dare_ties
dtype: bfloat16
parameters:
  int8_mask: true
base_model: SanjiWatsuki/Kunoichi-DPO-v2-7B
models:
  - model: SanjiWatsuki/Kunoichi-DPO-v2-7B
  - model: maywell/PiVoT-0.1-Evil-a
    parameters:
      density: 0.65
      weight: 0.15
  - model: mlabonne/NeuralOmniBeagle-7B-v2
    parameters:
      density: 0.85
      weight: 0.45

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Inv/Konstanta-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 73.54
AI2 Reasoning Challenge (25-Shot) 70.05
HellaSwag (10-Shot) 87.50
MMLU (5-Shot) 65.06
TruthfulQA (0-shot) 65.43
Winogrande (5-shot) 82.16
GSM8k (5-shot) 71.04