vit-base-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_SUR
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4946
- Accuracy: 0.9075
- Precision: 0.9136
- Recall: 0.9075
- F1: 0.9046
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.2895 | 0.6667 | 100 | 0.5586 | 0.795 | 0.8452 | 0.795 | 0.7997 |
0.0848 | 1.3333 | 200 | 0.8609 | 0.7975 | 0.8401 | 0.7975 | 0.7883 |
0.0782 | 2.0 | 300 | 0.7032 | 0.81 | 0.8414 | 0.81 | 0.8116 |
0.0158 | 2.6667 | 400 | 0.7198 | 0.8342 | 0.8570 | 0.8342 | 0.8336 |
0.0327 | 3.3333 | 500 | 0.7624 | 0.8458 | 0.8484 | 0.8458 | 0.8448 |
0.0044 | 4.0 | 600 | 0.6172 | 0.8792 | 0.8926 | 0.8792 | 0.8769 |
0.0032 | 4.6667 | 700 | 0.7772 | 0.8517 | 0.8589 | 0.8517 | 0.8496 |
0.0026 | 5.3333 | 800 | 0.8897 | 0.8375 | 0.8478 | 0.8375 | 0.8351 |
0.0033 | 6.0 | 900 | 0.4946 | 0.9075 | 0.9136 | 0.9075 | 0.9046 |
0.0019 | 6.6667 | 1000 | 0.6971 | 0.8725 | 0.8727 | 0.8725 | 0.8716 |
0.0016 | 7.3333 | 1100 | 0.7355 | 0.8692 | 0.8711 | 0.8692 | 0.8685 |
0.0136 | 8.0 | 1200 | 0.9004 | 0.8675 | 0.8900 | 0.8675 | 0.8613 |
0.0013 | 8.6667 | 1300 | 0.7646 | 0.875 | 0.8837 | 0.875 | 0.8715 |
0.0011 | 9.3333 | 1400 | 0.7833 | 0.875 | 0.8786 | 0.875 | 0.8729 |
0.0009 | 10.0 | 1500 | 0.7968 | 0.8767 | 0.8800 | 0.8767 | 0.8747 |
0.0009 | 10.6667 | 1600 | 0.8085 | 0.8758 | 0.8790 | 0.8758 | 0.8738 |
0.0008 | 11.3333 | 1700 | 0.8175 | 0.8758 | 0.8790 | 0.8758 | 0.8738 |
0.0008 | 12.0 | 1800 | 0.8242 | 0.8767 | 0.8801 | 0.8767 | 0.8746 |
0.0007 | 12.6667 | 1900 | 0.8292 | 0.8767 | 0.8801 | 0.8767 | 0.8746 |
0.0007 | 13.3333 | 2000 | 0.8335 | 0.8775 | 0.8812 | 0.8775 | 0.8754 |
0.0007 | 14.0 | 2100 | 0.8363 | 0.8775 | 0.8812 | 0.8775 | 0.8754 |
0.0007 | 14.6667 | 2200 | 0.8376 | 0.8775 | 0.8812 | 0.8775 | 0.8754 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Ivanrs/vit-base-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_SUR
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldertest set self-reported0.907
- Precision on imagefoldertest set self-reported0.914
- Recall on imagefoldertest set self-reported0.907
- F1 on imagefoldertest set self-reported0.905