Ivanrs's picture
vit-base-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_SUR
0b7bcb7 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: vit-base-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_SUR
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9075
          - name: Precision
            type: precision
            value: 0.9136222146251665
          - name: Recall
            type: recall
            value: 0.9075
          - name: F1
            type: f1
            value: 0.904614447173649

vit-base-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_SUR

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4946
  • Accuracy: 0.9075
  • Precision: 0.9136
  • Recall: 0.9075
  • F1: 0.9046

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.2895 0.6667 100 0.5586 0.795 0.8452 0.795 0.7997
0.0848 1.3333 200 0.8609 0.7975 0.8401 0.7975 0.7883
0.0782 2.0 300 0.7032 0.81 0.8414 0.81 0.8116
0.0158 2.6667 400 0.7198 0.8342 0.8570 0.8342 0.8336
0.0327 3.3333 500 0.7624 0.8458 0.8484 0.8458 0.8448
0.0044 4.0 600 0.6172 0.8792 0.8926 0.8792 0.8769
0.0032 4.6667 700 0.7772 0.8517 0.8589 0.8517 0.8496
0.0026 5.3333 800 0.8897 0.8375 0.8478 0.8375 0.8351
0.0033 6.0 900 0.4946 0.9075 0.9136 0.9075 0.9046
0.0019 6.6667 1000 0.6971 0.8725 0.8727 0.8725 0.8716
0.0016 7.3333 1100 0.7355 0.8692 0.8711 0.8692 0.8685
0.0136 8.0 1200 0.9004 0.8675 0.8900 0.8675 0.8613
0.0013 8.6667 1300 0.7646 0.875 0.8837 0.875 0.8715
0.0011 9.3333 1400 0.7833 0.875 0.8786 0.875 0.8729
0.0009 10.0 1500 0.7968 0.8767 0.8800 0.8767 0.8747
0.0009 10.6667 1600 0.8085 0.8758 0.8790 0.8758 0.8738
0.0008 11.3333 1700 0.8175 0.8758 0.8790 0.8758 0.8738
0.0008 12.0 1800 0.8242 0.8767 0.8801 0.8767 0.8746
0.0007 12.6667 1900 0.8292 0.8767 0.8801 0.8767 0.8746
0.0007 13.3333 2000 0.8335 0.8775 0.8812 0.8775 0.8754
0.0007 14.0 2100 0.8363 0.8775 0.8812 0.8775 0.8754
0.0007 14.6667 2200 0.8376 0.8775 0.8812 0.8775 0.8754

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu126
  • Datasets 3.2.0
  • Tokenizers 0.21.0