JerryYanJiang's picture
update model card README.md
a531f4e
metadata
license: mit
base_model: xlnet-large-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: baseline_xlnet-large-cased_epoch1_batch1_lr2e-05_w0.01
    results: []

baseline_xlnet-large-cased_epoch1_batch1_lr2e-05_w0.01

This model is a fine-tuned version of xlnet-large-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9656
  • Accuracy: 0.6274
  • F1: 0.0
  • Precision: 0.0
  • Recall: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.9638 1.0 3149 1.9656 0.6274 0.0 0.0 0.0

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.2
  • Tokenizers 0.13.3