metadata
license: cc-by-4.0
base_model: NazaGara/NER-fine-tuned-BETO
tags:
- generated_from_trainer
datasets:
- conll2002
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: beto-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2002
type: conll2002
config: es
split: validation
args: es
metrics:
- name: Precision
type: precision
value: 0.8340044742729307
- name: Recall
type: recall
value: 0.8566176470588235
- name: F1
type: f1
value: 0.8451598277034684
- name: Accuracy
type: accuracy
value: 0.9701369947929581
beto-finetuned-ner
This model is a fine-tuned version of NazaGara/NER-fine-tuned-BETO on the conll2002 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1588
- Precision: 0.8340
- Recall: 0.8566
- F1: 0.8452
- Accuracy: 0.9701
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0499 | 1.0 | 521 | 0.1304 | 0.8278 | 0.8536 | 0.8405 | 0.9704 |
0.0272 | 2.0 | 1042 | 0.1509 | 0.8351 | 0.8483 | 0.8417 | 0.9686 |
0.0153 | 3.0 | 1563 | 0.1588 | 0.8340 | 0.8566 | 0.8452 | 0.9701 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1