|
--- |
|
license: apache-2.0 |
|
base_model: ntu-spml/distilhubert |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- marsyas/gtzan |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: distilhubert-finetuned-gtzan |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: GTZAN |
|
type: marsyas/gtzan |
|
config: all |
|
split: train |
|
args: all |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.82 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilhubert-finetuned-gtzan |
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6623 |
|
- Accuracy: 0.82 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.2457 | 1.0 | 113 | 2.1827 | 0.33 | |
|
| 1.8385 | 2.0 | 226 | 1.6935 | 0.61 | |
|
| 1.46 | 3.0 | 339 | 1.4282 | 0.63 | |
|
| 1.1508 | 4.0 | 452 | 1.1055 | 0.7 | |
|
| 0.9972 | 5.0 | 565 | 0.8945 | 0.74 | |
|
| 0.7826 | 6.0 | 678 | 0.7784 | 0.77 | |
|
| 0.6802 | 7.0 | 791 | 0.7184 | 0.8 | |
|
| 0.4635 | 8.0 | 904 | 0.7725 | 0.76 | |
|
| 0.3746 | 9.0 | 1017 | 0.5875 | 0.84 | |
|
| 0.264 | 10.0 | 1130 | 0.7612 | 0.75 | |
|
| 0.1995 | 11.0 | 1243 | 0.6099 | 0.81 | |
|
| 0.135 | 12.0 | 1356 | 0.6306 | 0.81 | |
|
| 0.0974 | 13.0 | 1469 | 0.5947 | 0.83 | |
|
| 0.0563 | 14.0 | 1582 | 0.7485 | 0.8 | |
|
| 0.0443 | 15.0 | 1695 | 0.6977 | 0.79 | |
|
| 0.0565 | 16.0 | 1808 | 0.6331 | 0.83 | |
|
| 0.0295 | 17.0 | 1921 | 0.6538 | 0.82 | |
|
| 0.0178 | 18.0 | 2034 | 0.6977 | 0.82 | |
|
| 0.0191 | 19.0 | 2147 | 0.6453 | 0.83 | |
|
| 0.0147 | 20.0 | 2260 | 0.6623 | 0.82 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|