|
--- |
|
language: |
|
- "sr" |
|
tags: |
|
- "serbian" |
|
- "token-classification" |
|
- "pos" |
|
- "dependency-parsing" |
|
base_model: jerteh/gpt2-vrabac |
|
datasets: |
|
- "universal_dependencies" |
|
license: "cc-by-sa-4.0" |
|
pipeline_tag: "token-classification" |
|
widget: |
|
- text: "Да има сира и масла и моја би мати знала гибати гибаницу." |
|
- text: "Da ima sira i masla i moja bi mati znala gibati gibanicu." |
|
--- |
|
|
|
# gpt2-small-serbian-upos |
|
|
|
## Model Description |
|
|
|
This is a GPT-2 model in Serbian (Cyrillic and Latin) for POS-tagging and dependency-parsing, derived from [gpt2-vrabac](https://huggingface.co/jerteh/gpt2-vrabac). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). |
|
|
|
## How to Use |
|
|
|
```py |
|
from transformers import pipeline |
|
nlp=pipeline("upos","KoichiYasuoka/gpt2-small-serbian-upos",trust_remote_code=True,aggregation_strategy="simple") |
|
``` |
|
|
|
or |
|
|
|
```py |
|
import esupar |
|
nlp=esupar.load("KoichiYasuoka/gpt2-small-serbian-upos") |
|
``` |
|
|
|
## See Also |
|
|
|
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa/GPT models |
|
|
|
|