Kushagra07's picture
End of training
ca8aca9 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-base-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - recall
  - f1
  - precision
model-index:
  - name: swinv2-base-patch4-window8-256-finetuned-ind-17-imbalanced-aadhaarmask
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8463175819497658
          - name: Recall
            type: recall
            value: 0.8463175819497658
          - name: F1
            type: f1
            value: 0.8463640211224454
          - name: Precision
            type: precision
            value: 0.8481964005333177

swinv2-base-patch4-window8-256-finetuned-ind-17-imbalanced-aadhaarmask

This model is a fine-tuned version of microsoft/swinv2-base-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3463
  • Accuracy: 0.8463
  • Recall: 0.8463
  • F1: 0.8464
  • Precision: 0.8482

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall F1 Precision
No log 0.9974 293 0.6222 0.7901 0.7901 0.7737 0.7747
No log 1.9983 587 0.4901 0.8063 0.8063 0.7998 0.8066
No log 2.9991 881 0.4374 0.8225 0.8225 0.8170 0.8356
No log 4.0 1175 0.4262 0.8340 0.8340 0.8270 0.8541
No log 4.9974 1468 0.4079 0.8310 0.8310 0.8290 0.8379
No log 5.9983 1762 0.4117 0.8370 0.8370 0.8361 0.8509
No log 6.9991 2056 0.3807 0.8370 0.8370 0.8361 0.8416
No log 8.0 2350 0.3419 0.8595 0.8595 0.8583 0.8609
No log 8.9974 2643 0.3628 0.8438 0.8438 0.8424 0.8448
0.4492 9.9745 2930 0.3638 0.8399 0.8399 0.8394 0.8410

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.0a0+81ea7a4
  • Datasets 2.19.0
  • Tokenizers 0.19.1