Marcos12886's picture
End of training
26f9bb2 verified
|
raw
history blame
3.06 kB
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distilhubert-finetuned-donateacry
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8130081300813008
          - name: F1
            type: f1
            value: 0.7606844060819746
          - name: Precision
            type: precision
            value: 0.7167376435669118
          - name: Recall
            type: recall
            value: 0.8130081300813008

distilhubert-finetuned-donateacry

This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7024
  • Accuracy: 0.8130
  • F1: 0.7607
  • Precision: 0.7167
  • Recall: 0.8130

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 0.9032 7 1.0334 0.7317 0.6183 0.5354 0.7317
No log 1.9355 15 0.9193 0.7642 0.6866 0.6238 0.7642
No log 2.9677 23 0.7766 0.8049 0.7460 0.7005 0.8049
No log 4.0 31 0.8394 0.7724 0.7275 0.6889 0.7724
No log 4.9032 38 0.7391 0.7805 0.7351 0.6962 0.7805
No log 5.9355 46 0.7578 0.8130 0.7607 0.7167 0.8130
No log 6.9677 54 0.6822 0.8049 0.7558 0.7147 0.8049
No log 8.0 62 0.6980 0.8049 0.7543 0.7119 0.8049
No log 8.9032 69 0.7024 0.8130 0.7607 0.7167 0.8130

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1