Marcos12886's picture
End of training
26f9bb2 verified
|
raw
history blame
3.06 kB
---
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: distilhubert-finetuned-donateacry
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: audiofolder
type: audiofolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8130081300813008
- name: F1
type: f1
value: 0.7606844060819746
- name: Precision
type: precision
value: 0.7167376435669118
- name: Recall
type: recall
value: 0.8130081300813008
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-donateacry
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7024
- Accuracy: 0.8130
- F1: 0.7607
- Precision: 0.7167
- Recall: 0.8130
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 0.9032 | 7 | 1.0334 | 0.7317 | 0.6183 | 0.5354 | 0.7317 |
| No log | 1.9355 | 15 | 0.9193 | 0.7642 | 0.6866 | 0.6238 | 0.7642 |
| No log | 2.9677 | 23 | 0.7766 | 0.8049 | 0.7460 | 0.7005 | 0.8049 |
| No log | 4.0 | 31 | 0.8394 | 0.7724 | 0.7275 | 0.6889 | 0.7724 |
| No log | 4.9032 | 38 | 0.7391 | 0.7805 | 0.7351 | 0.6962 | 0.7805 |
| No log | 5.9355 | 46 | 0.7578 | 0.8130 | 0.7607 | 0.7167 | 0.8130 |
| No log | 6.9677 | 54 | 0.6822 | 0.8049 | 0.7558 | 0.7147 | 0.8049 |
| No log | 8.0 | 62 | 0.6980 | 0.8049 | 0.7543 | 0.7119 | 0.8049 |
| No log | 8.9032 | 69 | 0.7024 | 0.8130 | 0.7607 | 0.7167 | 0.8130 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1