|
---
|
|
library_name: transformers
|
|
license: apache-2.0
|
|
base_model: ntu-spml/distilhubert
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- audiofolder
|
|
metrics:
|
|
- accuracy
|
|
- f1
|
|
- precision
|
|
- recall
|
|
model-index:
|
|
- name: distilhubert-finetuned-donateacry
|
|
results:
|
|
- task:
|
|
name: Audio Classification
|
|
type: audio-classification
|
|
dataset:
|
|
name: audiofolder
|
|
type: audiofolder
|
|
config: default
|
|
split: train
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.8130081300813008
|
|
- name: F1
|
|
type: f1
|
|
value: 0.7606844060819746
|
|
- name: Precision
|
|
type: precision
|
|
value: 0.7167376435669118
|
|
- name: Recall
|
|
type: recall
|
|
value: 0.8130081300813008
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# distilhubert-finetuned-donateacry
|
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.7024
|
|
- Accuracy: 0.8130
|
|
- F1: 0.7607
|
|
- Precision: 0.7167
|
|
- Recall: 0.8130
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 0.001
|
|
- train_batch_size: 8
|
|
- eval_batch_size: 8
|
|
- seed: 42
|
|
- gradient_accumulation_steps: 8
|
|
- total_train_batch_size: 64
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: cosine
|
|
- lr_scheduler_warmup_ratio: 0.03
|
|
- num_epochs: 10
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
|
| No log | 0.9032 | 7 | 1.0334 | 0.7317 | 0.6183 | 0.5354 | 0.7317 |
|
|
| No log | 1.9355 | 15 | 0.9193 | 0.7642 | 0.6866 | 0.6238 | 0.7642 |
|
|
| No log | 2.9677 | 23 | 0.7766 | 0.8049 | 0.7460 | 0.7005 | 0.8049 |
|
|
| No log | 4.0 | 31 | 0.8394 | 0.7724 | 0.7275 | 0.6889 | 0.7724 |
|
|
| No log | 4.9032 | 38 | 0.7391 | 0.7805 | 0.7351 | 0.6962 | 0.7805 |
|
|
| No log | 5.9355 | 46 | 0.7578 | 0.8130 | 0.7607 | 0.7167 | 0.8130 |
|
|
| No log | 6.9677 | 54 | 0.6822 | 0.8049 | 0.7558 | 0.7147 | 0.8049 |
|
|
| No log | 8.0 | 62 | 0.6980 | 0.8049 | 0.7543 | 0.7119 | 0.8049 |
|
|
| No log | 8.9032 | 69 | 0.7024 | 0.8130 | 0.7607 | 0.7167 | 0.8130 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.44.2
|
|
- Pytorch 2.4.0+cu118
|
|
- Datasets 2.21.0
|
|
- Tokenizers 0.19.1
|
|
|