MatthewB245's picture
Update README.md
b878213 verified
|
raw
history blame
1 kB
metadata
language: en
tags:
  - emotion-classification
  - text-classification
  - distilbert
datasets:
  - dair-ai/emotion
metrics:
  - accuracy

Emotion Classification Model

Model Description

This model fine-tunes DistilBERT for a multi-class emotion classification task. The dataset that is used is dair-ai/emotion containing six emotion classes: sadness, joy, love, anger, fear and suprise

Training and Evaluation

  • Training Dataset: dair-ai/emotion (16,000 examples)
  • Validation Dataset: dair-ai/emotion (2,000 examples)
  • Validation Accuracy: [Your Results]
  • Test Accuracy: [Your Results]
  • Training Time: [Your Time]

Hyperparameters

  • Learning Rate: 5e-5
  • Batch Size: 16
  • Epochs: 4
  • Weight Decay: 0.01

Usage

from transformers import pipeline
classifier = pipeline("text-classification",
model="your-username/emotion-classification-model")
text = "I’m so happy today!"
result = classifier(text)
print(result)

Limitations

[Discuss any limitations you observed...]