metadata
library_name: transformers
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: Arabic_FineTuningAraBERT_AugV0_k5_task1_organization_fold1
results: []
Arabic_FineTuningAraBERT_AugV0_k5_task1_organization_fold1
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4618
- Qwk: 0.75
- Mse: 0.4618
- Rmse: 0.6796
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0556 | 2 | 3.0933 | 0.0397 | 3.0933 | 1.7588 |
No log | 0.1111 | 4 | 1.6453 | -0.0302 | 1.6453 | 1.2827 |
No log | 0.1667 | 6 | 0.8864 | 0.1250 | 0.8864 | 0.9415 |
No log | 0.2222 | 8 | 0.7494 | 0.4057 | 0.7494 | 0.8657 |
No log | 0.2778 | 10 | 0.9006 | 0.3982 | 0.9006 | 0.9490 |
No log | 0.3333 | 12 | 0.6438 | 0.4731 | 0.6438 | 0.8024 |
No log | 0.3889 | 14 | 0.7107 | 0.4556 | 0.7107 | 0.8430 |
No log | 0.4444 | 16 | 0.7383 | 0.5070 | 0.7383 | 0.8592 |
No log | 0.5 | 18 | 0.5348 | 0.6084 | 0.5348 | 0.7313 |
No log | 0.5556 | 20 | 0.4752 | 0.7535 | 0.4752 | 0.6894 |
No log | 0.6111 | 22 | 0.4653 | 0.7535 | 0.4653 | 0.6822 |
No log | 0.6667 | 24 | 0.4518 | 0.7921 | 0.4518 | 0.6722 |
No log | 0.7222 | 26 | 0.5582 | 0.6456 | 0.5582 | 0.7471 |
No log | 0.7778 | 28 | 0.5140 | 0.6392 | 0.5140 | 0.7169 |
No log | 0.8333 | 30 | 0.4498 | 0.7222 | 0.4498 | 0.6706 |
No log | 0.8889 | 32 | 0.4348 | 0.6903 | 0.4348 | 0.6594 |
No log | 0.9444 | 34 | 0.4718 | 0.6038 | 0.4718 | 0.6869 |
No log | 1.0 | 36 | 0.4420 | 0.5806 | 0.4420 | 0.6648 |
No log | 1.0556 | 38 | 0.5700 | 0.4251 | 0.5700 | 0.7550 |
No log | 1.1111 | 40 | 0.7186 | 0.5259 | 0.7186 | 0.8477 |
No log | 1.1667 | 42 | 0.8364 | 0.4865 | 0.8364 | 0.9145 |
No log | 1.2222 | 44 | 0.7109 | 0.5259 | 0.7109 | 0.8431 |
No log | 1.2778 | 46 | 0.5414 | 0.4724 | 0.5414 | 0.7358 |
No log | 1.3333 | 48 | 0.4997 | 0.5806 | 0.4997 | 0.7069 |
No log | 1.3889 | 50 | 0.5037 | 0.5806 | 0.5037 | 0.7097 |
No log | 1.4444 | 52 | 0.5170 | 0.6578 | 0.5170 | 0.7190 |
No log | 1.5 | 54 | 0.4995 | 0.6578 | 0.4995 | 0.7067 |
No log | 1.5556 | 56 | 0.4969 | 0.6094 | 0.4969 | 0.7049 |
No log | 1.6111 | 58 | 0.5579 | 0.6908 | 0.5579 | 0.7469 |
No log | 1.6667 | 60 | 0.5519 | 0.6715 | 0.5519 | 0.7429 |
No log | 1.7222 | 62 | 0.4589 | 0.6912 | 0.4589 | 0.6775 |
No log | 1.7778 | 64 | 0.4396 | 0.6889 | 0.4396 | 0.6630 |
No log | 1.8333 | 66 | 0.5894 | 0.6431 | 0.5894 | 0.7677 |
No log | 1.8889 | 68 | 0.5162 | 0.6125 | 0.5162 | 0.7185 |
No log | 1.9444 | 70 | 0.4232 | 0.7116 | 0.4232 | 0.6505 |
No log | 2.0 | 72 | 0.5512 | 0.6557 | 0.5512 | 0.7425 |
No log | 2.0556 | 74 | 0.6622 | 0.3982 | 0.6622 | 0.8137 |
No log | 2.1111 | 76 | 0.5814 | 0.5792 | 0.5814 | 0.7625 |
No log | 2.1667 | 78 | 0.4582 | 0.6075 | 0.4582 | 0.6769 |
No log | 2.2222 | 80 | 0.4246 | 0.6192 | 0.4246 | 0.6516 |
No log | 2.2778 | 82 | 0.4312 | 0.7529 | 0.4312 | 0.6566 |
No log | 2.3333 | 84 | 0.4299 | 0.7279 | 0.4299 | 0.6557 |
No log | 2.3889 | 86 | 0.4313 | 0.7279 | 0.4313 | 0.6567 |
No log | 2.4444 | 88 | 0.4385 | 0.7279 | 0.4385 | 0.6622 |
No log | 2.5 | 90 | 0.4019 | 0.7508 | 0.4019 | 0.6340 |
No log | 2.5556 | 92 | 0.4109 | 0.7336 | 0.4109 | 0.6410 |
No log | 2.6111 | 94 | 0.4612 | 0.7279 | 0.4612 | 0.6791 |
No log | 2.6667 | 96 | 0.6360 | 0.7308 | 0.6360 | 0.7975 |
No log | 2.7222 | 98 | 0.6027 | 0.7308 | 0.6027 | 0.7763 |
No log | 2.7778 | 100 | 0.4333 | 0.7279 | 0.4333 | 0.6582 |
No log | 2.8333 | 102 | 0.3465 | 0.7640 | 0.3465 | 0.5887 |
No log | 2.8889 | 104 | 0.3522 | 0.6857 | 0.3522 | 0.5935 |
No log | 2.9444 | 106 | 0.3756 | 0.7529 | 0.3756 | 0.6129 |
No log | 3.0 | 108 | 0.5107 | 0.6831 | 0.5107 | 0.7147 |
No log | 3.0556 | 110 | 0.5991 | 0.5917 | 0.5991 | 0.7740 |
No log | 3.1111 | 112 | 0.5363 | 0.6831 | 0.5363 | 0.7323 |
No log | 3.1667 | 114 | 0.4526 | 0.7319 | 0.4526 | 0.6728 |
No log | 3.2222 | 116 | 0.4067 | 0.7287 | 0.4067 | 0.6377 |
No log | 3.2778 | 118 | 0.4169 | 0.7529 | 0.4169 | 0.6457 |
No log | 3.3333 | 120 | 0.4835 | 0.7319 | 0.4835 | 0.6954 |
No log | 3.3889 | 122 | 0.5446 | 0.7154 | 0.5446 | 0.7380 |
No log | 3.4444 | 124 | 0.4873 | 0.7279 | 0.4873 | 0.6981 |
No log | 3.5 | 126 | 0.4405 | 0.7063 | 0.4405 | 0.6637 |
No log | 3.5556 | 128 | 0.4086 | 0.7535 | 0.4086 | 0.6392 |
No log | 3.6111 | 130 | 0.4133 | 0.8239 | 0.4133 | 0.6429 |
No log | 3.6667 | 132 | 0.3964 | 0.7907 | 0.3964 | 0.6296 |
No log | 3.7222 | 134 | 0.4214 | 0.7279 | 0.4214 | 0.6492 |
No log | 3.7778 | 136 | 0.5588 | 0.7354 | 0.5588 | 0.7475 |
No log | 3.8333 | 138 | 0.5451 | 0.7354 | 0.5451 | 0.7383 |
No log | 3.8889 | 140 | 0.5140 | 0.7354 | 0.5140 | 0.7170 |
No log | 3.9444 | 142 | 0.3896 | 0.7658 | 0.3896 | 0.6242 |
No log | 4.0 | 144 | 0.3400 | 0.7879 | 0.3400 | 0.5831 |
No log | 4.0556 | 146 | 0.3456 | 0.7879 | 0.3456 | 0.5879 |
No log | 4.1111 | 148 | 0.3847 | 0.7829 | 0.3847 | 0.6202 |
No log | 4.1667 | 150 | 0.4678 | 0.75 | 0.4678 | 0.6840 |
No log | 4.2222 | 152 | 0.5004 | 0.7308 | 0.5004 | 0.7074 |
No log | 4.2778 | 154 | 0.4816 | 0.7605 | 0.4816 | 0.6940 |
No log | 4.3333 | 156 | 0.4361 | 0.7063 | 0.4361 | 0.6604 |
No log | 4.3889 | 158 | 0.4254 | 0.7123 | 0.4254 | 0.6522 |
No log | 4.4444 | 160 | 0.4357 | 0.7063 | 0.4357 | 0.6601 |
No log | 4.5 | 162 | 0.4579 | 0.75 | 0.4579 | 0.6767 |
No log | 4.5556 | 164 | 0.4452 | 0.75 | 0.4452 | 0.6672 |
No log | 4.6111 | 166 | 0.3989 | 0.6978 | 0.3989 | 0.6316 |
No log | 4.6667 | 168 | 0.3777 | 0.7535 | 0.3777 | 0.6146 |
No log | 4.7222 | 170 | 0.3713 | 0.7260 | 0.3713 | 0.6094 |
No log | 4.7778 | 172 | 0.3874 | 0.72 | 0.3874 | 0.6225 |
No log | 4.8333 | 174 | 0.4601 | 0.75 | 0.4601 | 0.6783 |
No log | 4.8889 | 176 | 0.4732 | 0.75 | 0.4732 | 0.6879 |
No log | 4.9444 | 178 | 0.4075 | 0.7279 | 0.4075 | 0.6384 |
No log | 5.0 | 180 | 0.3984 | 0.7279 | 0.3984 | 0.6312 |
No log | 5.0556 | 182 | 0.4473 | 0.75 | 0.4473 | 0.6688 |
No log | 5.1111 | 184 | 0.4503 | 0.75 | 0.4503 | 0.6710 |
No log | 5.1667 | 186 | 0.4286 | 0.7279 | 0.4286 | 0.6547 |
No log | 5.2222 | 188 | 0.4776 | 0.75 | 0.4776 | 0.6911 |
No log | 5.2778 | 190 | 0.4545 | 0.75 | 0.4545 | 0.6742 |
No log | 5.3333 | 192 | 0.4016 | 0.7279 | 0.4016 | 0.6337 |
No log | 5.3889 | 194 | 0.4053 | 0.75 | 0.4053 | 0.6367 |
No log | 5.4444 | 196 | 0.4571 | 0.75 | 0.4571 | 0.6761 |
No log | 5.5 | 198 | 0.4388 | 0.75 | 0.4388 | 0.6624 |
No log | 5.5556 | 200 | 0.4189 | 0.75 | 0.4189 | 0.6472 |
No log | 5.6111 | 202 | 0.4415 | 0.75 | 0.4415 | 0.6644 |
No log | 5.6667 | 204 | 0.5136 | 0.7605 | 0.5136 | 0.7167 |
No log | 5.7222 | 206 | 0.5840 | 0.7308 | 0.5840 | 0.7642 |
No log | 5.7778 | 208 | 0.6431 | 0.7308 | 0.6431 | 0.8019 |
No log | 5.8333 | 210 | 0.6795 | 0.5817 | 0.6795 | 0.8243 |
No log | 5.8889 | 212 | 0.5915 | 0.6831 | 0.5915 | 0.7691 |
No log | 5.9444 | 214 | 0.5359 | 0.6831 | 0.5359 | 0.7320 |
No log | 6.0 | 216 | 0.4889 | 0.7778 | 0.4889 | 0.6992 |
No log | 6.0556 | 218 | 0.5029 | 0.7605 | 0.5029 | 0.7092 |
No log | 6.1111 | 220 | 0.5338 | 0.7605 | 0.5338 | 0.7306 |
No log | 6.1667 | 222 | 0.5857 | 0.7605 | 0.5857 | 0.7653 |
No log | 6.2222 | 224 | 0.6538 | 0.7605 | 0.6538 | 0.8086 |
No log | 6.2778 | 226 | 0.6287 | 0.7605 | 0.6287 | 0.7929 |
No log | 6.3333 | 228 | 0.5211 | 0.7605 | 0.5211 | 0.7219 |
No log | 6.3889 | 230 | 0.4404 | 0.7063 | 0.4404 | 0.6636 |
No log | 6.4444 | 232 | 0.4278 | 0.6851 | 0.4278 | 0.6541 |
No log | 6.5 | 234 | 0.4328 | 0.6851 | 0.4328 | 0.6579 |
No log | 6.5556 | 236 | 0.4659 | 0.7279 | 0.4659 | 0.6825 |
No log | 6.6111 | 238 | 0.5637 | 0.7605 | 0.5637 | 0.7508 |
No log | 6.6667 | 240 | 0.6095 | 0.7605 | 0.6095 | 0.7807 |
No log | 6.7222 | 242 | 0.6345 | 0.7605 | 0.6345 | 0.7966 |
No log | 6.7778 | 244 | 0.6299 | 0.7605 | 0.6299 | 0.7937 |
No log | 6.8333 | 246 | 0.5537 | 0.7605 | 0.5537 | 0.7441 |
No log | 6.8889 | 248 | 0.4638 | 0.75 | 0.4638 | 0.6810 |
No log | 6.9444 | 250 | 0.4001 | 0.6818 | 0.4001 | 0.6325 |
No log | 7.0 | 252 | 0.3931 | 0.7027 | 0.3931 | 0.6270 |
No log | 7.0556 | 254 | 0.3994 | 0.6160 | 0.3994 | 0.6320 |
No log | 7.1111 | 256 | 0.3971 | 0.6286 | 0.3971 | 0.6302 |
No log | 7.1667 | 258 | 0.4116 | 0.7287 | 0.4116 | 0.6415 |
No log | 7.2222 | 260 | 0.4721 | 0.7658 | 0.4721 | 0.6871 |
No log | 7.2778 | 262 | 0.5399 | 0.7154 | 0.5399 | 0.7348 |
No log | 7.3333 | 264 | 0.5713 | 0.7154 | 0.5713 | 0.7559 |
No log | 7.3889 | 266 | 0.5490 | 0.7154 | 0.5490 | 0.7410 |
No log | 7.4444 | 268 | 0.4845 | 0.75 | 0.4845 | 0.6961 |
No log | 7.5 | 270 | 0.4236 | 0.7426 | 0.4236 | 0.6508 |
No log | 7.5556 | 272 | 0.3973 | 0.6818 | 0.3973 | 0.6303 |
No log | 7.6111 | 274 | 0.3949 | 0.6889 | 0.3949 | 0.6284 |
No log | 7.6667 | 276 | 0.3996 | 0.72 | 0.3996 | 0.6321 |
No log | 7.7222 | 278 | 0.4316 | 0.7279 | 0.4316 | 0.6570 |
No log | 7.7778 | 280 | 0.5087 | 0.75 | 0.5087 | 0.7132 |
No log | 7.8333 | 282 | 0.6017 | 0.75 | 0.6017 | 0.7757 |
No log | 7.8889 | 284 | 0.6446 | 0.6957 | 0.6446 | 0.8029 |
No log | 7.9444 | 286 | 0.6486 | 0.7445 | 0.6486 | 0.8054 |
No log | 8.0 | 288 | 0.6030 | 0.7445 | 0.6030 | 0.7765 |
No log | 8.0556 | 290 | 0.5665 | 0.7605 | 0.5665 | 0.7526 |
No log | 8.1111 | 292 | 0.5152 | 0.75 | 0.5152 | 0.7178 |
No log | 8.1667 | 294 | 0.4757 | 0.7279 | 0.4757 | 0.6897 |
No log | 8.2222 | 296 | 0.4745 | 0.75 | 0.4745 | 0.6888 |
No log | 8.2778 | 298 | 0.4885 | 0.75 | 0.4885 | 0.6989 |
No log | 8.3333 | 300 | 0.5127 | 0.75 | 0.5127 | 0.7161 |
No log | 8.3889 | 302 | 0.5248 | 0.75 | 0.5248 | 0.7244 |
No log | 8.4444 | 304 | 0.5066 | 0.75 | 0.5066 | 0.7118 |
No log | 8.5 | 306 | 0.4733 | 0.75 | 0.4733 | 0.6880 |
No log | 8.5556 | 308 | 0.4621 | 0.75 | 0.4621 | 0.6798 |
No log | 8.6111 | 310 | 0.4534 | 0.75 | 0.4534 | 0.6733 |
No log | 8.6667 | 312 | 0.4487 | 0.7279 | 0.4487 | 0.6699 |
No log | 8.7222 | 314 | 0.4341 | 0.7279 | 0.4341 | 0.6589 |
No log | 8.7778 | 316 | 0.4286 | 0.7426 | 0.4286 | 0.6547 |
No log | 8.8333 | 318 | 0.4222 | 0.7426 | 0.4222 | 0.6498 |
No log | 8.8889 | 320 | 0.4262 | 0.7426 | 0.4262 | 0.6528 |
No log | 8.9444 | 322 | 0.4392 | 0.7426 | 0.4392 | 0.6627 |
No log | 9.0 | 324 | 0.4494 | 0.7426 | 0.4494 | 0.6703 |
No log | 9.0556 | 326 | 0.4721 | 0.75 | 0.4721 | 0.6871 |
No log | 9.1111 | 328 | 0.4929 | 0.75 | 0.4929 | 0.7021 |
No log | 9.1667 | 330 | 0.5007 | 0.75 | 0.5007 | 0.7076 |
No log | 9.2222 | 332 | 0.5006 | 0.75 | 0.5006 | 0.7075 |
No log | 9.2778 | 334 | 0.4938 | 0.75 | 0.4938 | 0.7027 |
No log | 9.3333 | 336 | 0.4826 | 0.75 | 0.4826 | 0.6947 |
No log | 9.3889 | 338 | 0.4824 | 0.75 | 0.4824 | 0.6946 |
No log | 9.4444 | 340 | 0.4837 | 0.75 | 0.4837 | 0.6955 |
No log | 9.5 | 342 | 0.4808 | 0.75 | 0.4808 | 0.6934 |
No log | 9.5556 | 344 | 0.4794 | 0.75 | 0.4794 | 0.6924 |
No log | 9.6111 | 346 | 0.4730 | 0.75 | 0.4730 | 0.6878 |
No log | 9.6667 | 348 | 0.4698 | 0.75 | 0.4698 | 0.6854 |
No log | 9.7222 | 350 | 0.4652 | 0.75 | 0.4652 | 0.6821 |
No log | 9.7778 | 352 | 0.4632 | 0.75 | 0.4632 | 0.6806 |
No log | 9.8333 | 354 | 0.4635 | 0.75 | 0.4635 | 0.6808 |
No log | 9.8889 | 356 | 0.4637 | 0.75 | 0.4637 | 0.6809 |
No log | 9.9444 | 358 | 0.4626 | 0.75 | 0.4626 | 0.6801 |
No log | 10.0 | 360 | 0.4618 | 0.75 | 0.4618 | 0.6796 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1