metadata
library_name: transformers
license: mit
base_model: MBZUAI/speecht5_tts_clartts_ar
tags:
- generated_from_trainer
model-index:
- name: speecht5_finetuned_essam2_ar
results: []
speecht5_finetuned_essam2_ar
This model is a fine-tuned version of MBZUAI/speecht5_tts_clartts_ar on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3333
Uses
๐ค Transformers Usage
You can run ArTST TTS locally with the ๐ค Transformers library.
- First install the ๐ค Transformers library, sentencepiece, soundfile and datasets(optional):
pip install --upgrade pip
pip install --upgrade transformers sentencepiece datasets[audio]
- Run inference via the
Text-to-Speech
(TTS) pipeline. You can access the Arabic SPeechT5 model via the TTS pipeline in just a few lines of code!
from transformers import pipeline
from datasets import load_dataset
import soundfile as sf
synthesiser = pipeline("text-to-speech", "("Messam174/speecht5_finetuned_essam2_ar")
embeddings_dataset = load_dataset("herwoww/arabic_xvector_embeddings", split="validation")
speaker_embedding = torch.tensor(embeddings_dataset[105]["speaker_embeddings"]).unsqueeze(0)
# You can replace this embedding with your own as well.
speech = synthesiser("ุงูุณูุงู
ุนูููู
ูุฑุญู
ุฉ ุงููู ูุจุฑูุงุชู ุญูุงูู
ุงููู ุฌู
ูุนุง", forward_params={"speaker_embeddings": speaker_embedding})
# ArTST is trained without diacritics.
sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
- Run inference via the Transformers modelling code - You can use the processor + generate code to convert text into a mono 16 kHz speech waveform for more fine-grained control.
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from datasets import load_dataset
import torch
import soundfile as sf
from pydub import AudioSegment
# Check if GPU is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load processor, model, and vocoder
processor = SpeechT5Processor.from_pretrained("Messam174/speecht5_finetuned_essam2_ar")
model = SpeechT5ForTextToSpeech.from_pretrained("Messam174/speecht5_finetuned_essam2_ar").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
# Prepare inputs
inputs = processor(
text="ุงูุณูุงู
ุนูููู
ูุฑุญู
ุฉ ุงููู ูุจุฑูุงุชู ุญูุงูู
ุงููู ุฌู
ูุนุง", return_tensors="pt"
).to(device)
# Load xvector containing speaker's voice characteristics from a dataset
embeddings_dataset = load_dataset("herwoww/arabic_xvector_embeddings", split="validation")
speaker_embedding = torch.tensor(embeddings_dataset[105]["speaker_embeddings"]).unsqueeze(0).to(device)
# Generate speech
with torch.no_grad(): # Disable gradient computation for inference
speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
# Save the output as WAV
wav_file = "speech.wav"
sf.write(wav_file, speech.cpu().numpy(), samplerate=16000)
print(f"Speech saved to '{wav_file}'")
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.3806 | 0.3742 | 100 | 0.3452 |
0.3873 | 0.7484 | 200 | 0.3487 |
0.3788 | 1.1225 | 300 | 0.3441 |
0.3676 | 1.4967 | 400 | 0.3380 |
0.3668 | 1.8709 | 500 | 0.3333 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3