MiguelCosta's picture
End of training
769561d
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: MiguelCosta/distilbert-1-finetuned-cisco
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# MiguelCosta/distilbert-1-finetuned-cisco
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.2723
- Validation Loss: 2.4284
- Epoch: 39
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -964, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 4.4357 | 4.3213 | 0 |
| 4.1763 | 3.9111 | 1 |
| 3.8803 | 3.6751 | 2 |
| 3.7135 | 3.5458 | 3 |
| 3.5861 | 3.4489 | 4 |
| 3.5176 | 3.4323 | 5 |
| 3.4022 | 3.3658 | 6 |
| 3.3259 | 3.2113 | 7 |
| 3.2499 | 3.0623 | 8 |
| 3.2129 | 3.0298 | 9 |
| 3.1177 | 2.9181 | 10 |
| 3.0144 | 2.9550 | 11 |
| 2.9502 | 2.8758 | 12 |
| 2.9074 | 2.8674 | 13 |
| 2.8922 | 2.7877 | 14 |
| 2.8333 | 2.8283 | 15 |
| 2.7982 | 2.7717 | 16 |
| 2.7453 | 2.7578 | 17 |
| 2.6611 | 2.5425 | 18 |
| 2.6330 | 2.6145 | 19 |
| 2.5642 | 2.5415 | 20 |
| 2.5352 | 2.5437 | 21 |
| 2.4939 | 2.4214 | 22 |
| 2.4287 | 2.4882 | 23 |
| 2.4142 | 2.5091 | 24 |
| 2.3676 | 2.3997 | 25 |
| 2.3121 | 2.4515 | 26 |
| 2.3085 | 2.2349 | 27 |
| 2.2839 | 2.3205 | 28 |
| 2.3248 | 2.3273 | 29 |
| 2.2763 | 2.2583 | 30 |
| 2.2710 | 2.3896 | 31 |
| 2.2950 | 2.3224 | 32 |
| 2.3026 | 2.3910 | 33 |
| 2.3116 | 2.3255 | 34 |
| 2.2640 | 2.3186 | 35 |
| 2.2958 | 2.3332 | 36 |
| 2.3256 | 2.3646 | 37 |
| 2.2831 | 2.3751 | 38 |
| 2.2723 | 2.4284 | 39 |
### Framework versions
- Transformers 4.22.1
- TensorFlow 2.8.2
- Datasets 2.4.0
- Tokenizers 0.12.1