metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:900
- loss:CoSENTLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: display
sentences:
- Geographical
- Communication
- Artifact
- source_sentence: expense
sentences:
- Artifact
- Time
- Geographical
- source_sentence: area
sentences:
- Communication
- Organization
- Quantity
- source_sentence: test_result
sentences:
- Time
- Geographical
- Time
- source_sentence: legal_guardian
sentences:
- Artifact
- Person
- Person
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.8510927039014685
name: Pearson Cosine
- type: spearman_cosine
value: 0.8372741864830964
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8233071371304348
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8391989547278852
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8236213734557936
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8372741864830964
name: Spearman Euclidean
- type: pearson_dot
value: 0.8510927021851241
name: Pearson Dot
- type: spearman_dot
value: 0.8372741864830964
name: Spearman Dot
- type: pearson_max
value: 0.8510927039014685
name: Pearson Max
- type: spearman_max
value: 0.8391989547278852
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev test
type: sts-dev_test
metrics:
- type: pearson_cosine
value: 0.8296374742898318
name: Pearson Cosine
- type: spearman_cosine
value: 0.8280786712108251
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8056178202972799
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8280786712108251
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.811720698434899
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8280786712108251
name: Spearman Euclidean
- type: pearson_dot
value: 0.829637493696392
name: Pearson Dot
- type: spearman_dot
value: 0.8280786712108251
name: Spearman Dot
- type: pearson_max
value: 0.829637493696392
name: Pearson Max
- type: spearman_max
value: 0.8280786712108251
name: Spearman Max
SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Naveen20o1/all_MiniLM_L6_nav1")
# Run inference
sentences = [
'legal_guardian',
'Person',
'Person',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8511 |
spearman_cosine | 0.8373 |
pearson_manhattan | 0.8233 |
spearman_manhattan | 0.8392 |
pearson_euclidean | 0.8236 |
spearman_euclidean | 0.8373 |
pearson_dot | 0.8511 |
spearman_dot | 0.8373 |
pearson_max | 0.8511 |
spearman_max | 0.8392 |
Semantic Similarity
- Dataset:
sts-dev_test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8296 |
spearman_cosine | 0.8281 |
pearson_manhattan | 0.8056 |
spearman_manhattan | 0.8281 |
pearson_euclidean | 0.8117 |
spearman_euclidean | 0.8281 |
pearson_dot | 0.8296 |
spearman_dot | 0.8281 |
pearson_max | 0.8296 |
spearman_max | 0.8281 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 900 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 4.31 tokens
- max: 7 tokens
- min: 3 tokens
- mean: 3.0 tokens
- max: 3 tokens
- min: 0.0
- mean: 0.49
- max: 1.0
- Samples:
sentence1 sentence2 score reach
Quantity
1.0
manufacture_date
Time
1.0
participant_number
Geographical
0.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 60 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 4.42 tokens
- max: 10 tokens
- min: 3 tokens
- mean: 3.0 tokens
- max: 3 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence1 sentence2 score tax_amount
Communication
0.0
territory
Geographical
1.0
employment_date
Geographical
0.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 11warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 11max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-dev_test_spearman_cosine |
---|---|---|---|---|---|
0.8772 | 50 | 3.4043 | - | - | - |
1.7544 | 100 | 1.7413 | 1.4082 | 0.8373 | - |
2.6316 | 150 | 0.6863 | - | - | - |
3.5088 | 200 | 0.4264 | 0.6584 | 0.8392 | - |
4.3860 | 250 | 0.0927 | - | - | - |
5.2632 | 300 | 0.1547 | 0.5512 | 0.8411 | - |
6.1404 | 350 | 0.042 | - | - | - |
7.0175 | 400 | 0.0422 | 0.5881 | 0.8392 | - |
7.8947 | 450 | 0.0484 | - | - | - |
8.7719 | 500 | 0.0506 | 0.6854 | 0.8353 | - |
9.6491 | 550 | 0.0105 | - | - | - |
10.5263 | 600 | 0.0039 | 0.6157 | 0.8373 | - |
11.0 | 627 | - | - | - | 0.8281 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}