Text Generation
Transformers
code
Eval Results
Inference Endpoints
starcoder-GGML / README.md
Sergey Kostyaev
Update readme
876da68
metadata
pipeline_tag: text-generation
inference: true
widget:
  - text: 'def print_hello_world():'
    example_title: Hello world
    group: Python
license: bigcode-openrail-m
datasets:
  - bigcode/the-stack-dedup
metrics:
  - code_eval
library_name: transformers
tags:
  - code
model-index:
  - name: StarCoder
    results:
      - task:
          type: text-generation
        dataset:
          type: openai_humaneval
          name: HumanEval (Prompted)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.408
            verified: false
      - task:
          type: text-generation
        dataset:
          type: openai_humaneval
          name: HumanEval
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.336
            verified: false
      - task:
          type: text-generation
        dataset:
          type: mbpp
          name: MBPP
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.527
            verified: false
      - task:
          type: text-generation
        dataset:
          type: ds1000
          name: DS-1000 (Overall Completion)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.26
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (C++)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.3155
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (C#)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.2101
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (D)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.1357
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (Go)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.1761
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (Java)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.3022
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (Julia)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.2302
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (JavaScript)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.3079
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (Lua)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.2389
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (PHP)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.2608
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (Perl)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.1734
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (Python)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.3357
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (R)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.155
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (Ruby)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.0124
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (Racket)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.0007
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (Rust)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.2184
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (Scala)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.2761
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (Bash)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.1046
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (Swift)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.2274
            verified: false
      - task:
          type: text-generation
        dataset:
          type: nuprl/MultiPL-E
          name: MultiPL-HumanEval (TypeScript)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.3229
            verified: false
extra_gated_prompt: >-
  ## Model License Agreement

  Please read the BigCode [OpenRAIL-M
  license](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement)
  agreement before accepting it.
    
extra_gated_fields:
  I accept the above license agreement, and will use the Model complying with the set of use restrictions and sharing requirements: checkbox

starcoder-GGML

This is GGML format quantised 4bit, 5bit and 8bit models of StarCoder. This repo is the result of quantising to 4bit, 5bit and 8bit GGML for CPU inference using ggml.

Original model card

banner

Play with the model on the StarCoder Playground.

Table of Contents

  1. Model Summary
  2. Use
  3. Limitations
  4. Training
  5. License
  6. Citation

Model Summary

The StarCoder models are 15.5B parameter models trained on 80+ programming languages from The Stack (v1.2), with opt-out requests excluded. The model uses Multi Query Attention, a context window of 8192 tokens, and was trained using the Fill-in-the-Middle objective on 1 trillion tokens.

Use

Intended use

The model was trained on GitHub code. As such it is not an instruction model and commands like "Write a function that computes the square root." do not work well. However, by using the Tech Assistant prompt you can turn it into a capable technical assistant.

Feel free to share your generations in the Community tab!

Generation

# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "bigcode/starcoder"
device = "cuda" # for GPU usage or "cpu" for CPU usage

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)

inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))

Fill-in-the-middle

Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output:

input_text = "<fim-prefix>def print_hello_world():\n    <fim-suffix>\n    print('Hello world!')<fim-middle>"
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))

Attribution & Other Requirements

The pretraining dataset of the model was filtered for permissive licenses only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a search index that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code.

Limitations

The model has been trained on source code from 80+ programming languages. The predominant natural language in source code is English although other languages are also present. As such the model is capable of generating code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits. See the paper for an in-depth discussion of the model limitations.

Training

Model

  • Architecture: GPT-2 model with multi-query attention and Fill-in-the-Middle objective
  • Pretraining steps: 250k
  • Pretraining tokens: 1 trillion
  • Precision: bfloat16

Hardware

  • GPUs: 512 Tesla A100
  • Training time: 24 days

Software

License

The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement here.

Citation

@article{li2023starcoder,
      title={StarCoder: may the source be with you!}, 
      author={Raymond Li and Loubna Ben Allal and Yangtian Zi and Niklas Muennighoff and Denis Kocetkov and Chenghao Mou and Marc Marone and Christopher Akiki and Jia Li and Jenny Chim and Qian Liu and Evgenii Zheltonozhskii and Terry Yue Zhuo and Thomas Wang and Olivier Dehaene and Mishig Davaadorj and Joel Lamy-Poirier and João Monteiro and Oleh Shliazhko and Nicolas Gontier and Nicholas Meade and Armel Zebaze and Ming-Ho Yee and Logesh Kumar Umapathi and Jian Zhu and Benjamin Lipkin and Muhtasham Oblokulov and Zhiruo Wang and Rudra Murthy and Jason Stillerman and Siva Sankalp Patel and Dmitry Abulkhanov and Marco Zocca and Manan Dey and Zhihan Zhang and Nour Fahmy and Urvashi Bhattacharyya and Wenhao Yu and Swayam Singh and Sasha Luccioni and Paulo Villegas and Maxim Kunakov and Fedor Zhdanov and Manuel Romero and Tony Lee and Nadav Timor and Jennifer Ding and Claire Schlesinger and Hailey Schoelkopf and Jan Ebert and Tri Dao and Mayank Mishra and Alex Gu and Jennifer Robinson and Carolyn Jane Anderson and Brendan Dolan-Gavitt and Danish Contractor and Siva Reddy and Daniel Fried and Dzmitry Bahdanau and Yacine Jernite and Carlos Muñoz Ferrandis and Sean Hughes and Thomas Wolf and Arjun Guha and Leandro von Werra and Harm de Vries},
      year={2023},
      eprint={2305.06161},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}