Nhut DOANNGUYEN
Merge branch 'main' of https://huggingface.co/Nhut/wav2vec2-large-xlsr-vietnamese
60cf54f
language: vi | |
datasets: | |
- common_voice | |
- TODO: https://data.mendeley.com/datasets/k9sxg2twv4/4 | |
metrics: | |
- wer | |
tags: | |
- audio | |
- automatic-speech-recognition | |
- speech | |
- xlsr-fine-tuning-week | |
license: apache-2.0 | |
model-index: | |
- name: XLSR Wav2Vec2 Vietnamese by Nhut | |
results: | |
- task: | |
name: Speech Recognition | |
type: automatic-speech-recognition | |
dataset: | |
name: Common Voice vi | |
type: common_voice | |
args: vi | |
metrics: | |
- name: Test WER | |
type: wer | |
value: 54.55 | |
# Wav2Vec2-Large-XLSR-53-Vietnamese | |
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Vietnamese using the [Common Voice](https://huggingface.co/datasets/common_voice), and [FOSD](https://data.mendeley.com/datasets/k9sxg2twv4/4). | |
When using this model, make sure that your speech input is sampled at 16kHz. | |
## Usage | |
The model can be used directly (without a language model) as follows: | |
```python | |
import torch | |
import torchaudio | |
from datasets import load_dataset | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
ENCODER = { | |
"ia ": "iê ", | |
"ìa ": "iề ", | |
"ía ": "iế ", | |
"ỉa ": "iể ", | |
"ĩa ": "iễ ", | |
"ịa ": "iệ ", | |
"ya ": "yê ", | |
"ỳa ": "yề ", | |
"ýa ": "yế ", | |
"ỷa ": "yể ", | |
"ỹa ": "yễ ", | |
"ỵa ": "yệ ", | |
"ua ": "uô ", | |
"ùa ": "uồ ", | |
"úa ": "uố ", | |
"ủa ": "uổ ", | |
"ũa ": "uỗ ", | |
"ụa ": "uộ ", | |
"ưa ": "ươ ", | |
"ừa ": "ườ ", | |
"ứa ": "ướ ", | |
"ửa ": "ưở ", | |
"ữa ": "ưỡ ", | |
"ựa ": "ượ ", | |
"ke": "ce", | |
"kè": "cè", | |
"ké": "cé", | |
"kẻ": "cẻ", | |
"kẽ": "cẽ", | |
"kẹ": "cẹ", | |
"kê": "cê", | |
"kề": "cề", | |
"kế": "cế", | |
"kể": "cể", | |
"kễ": "cễ", | |
"kệ": "cệ", | |
"ki": "ci", | |
"kì": "cì", | |
"kí": "cí", | |
"kỉ": "cỉ", | |
"kĩ": "cĩ", | |
"kị": "cị", | |
"ky": "cy", | |
"kỳ": "cỳ", | |
"ký": "cý", | |
"kỷ": "cỷ", | |
"kỹ": "cỹ", | |
"kỵ": "cỵ", | |
"ghe": "ge", | |
"ghè": "gè", | |
"ghé": "gé", | |
"ghẻ": "gẻ", | |
"ghẽ": "gẽ", | |
"ghẹ": "gẹ", | |
"ghê": "gê", | |
"ghề": "gề", | |
"ghế": "gế", | |
"ghể": "gể", | |
"ghễ": "gễ", | |
"ghệ": "gệ", | |
"ngh": "\x80", | |
"uyê": "\x96", | |
"uyề": "\x97", | |
"uyế": "\x98", | |
"uyể": "\x99", | |
"uyễ": "\x9a", | |
"uyệ": "\x9b", | |
"ng": "\x81", | |
"ch": "\x82", | |
"gh": "\x83", | |
"nh": "\x84", | |
"gi": "\x85", | |
"ph": "\x86", | |
"kh": "\x87", | |
"th": "\x88", | |
"tr": "\x89", | |
"uy": "\x8a", | |
"uỳ": "\x8b", | |
"uý": "\x8c", | |
"uỷ": "\x8d", | |
"uỹ": "\x8e", | |
"uỵ": "\x8f", | |
"iê": "\x90", | |
"iề": "\x91", | |
"iế": "\x92", | |
"iể": "\x93", | |
"iễ": "\x94", | |
"iệ": "\x95", | |
"uô": "\x9c", | |
"uồ": "\x9d", | |
"uố": "\x9e", | |
"uổ": "\x9f", | |
"uỗ": "\xa0", | |
"uộ": "\xa1", | |
"ươ": "\xa2", | |
"ườ": "\xa3", | |
"ướ": "\xa4", | |
"ưở": "\xa5", | |
"ưỡ": "\xa6", | |
"ượ": "\xa7", | |
} | |
def decode_string(x): | |
for k, v in list(reversed(list(ENCODER.items()))): | |
x = x.replace(v, k) | |
return x | |
test_dataset = load_dataset("common_voice", "vi", split="test[:2%]") | |
processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese") | |
model = Wav2Vec2ForCTC.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese") | |
resampler = torchaudio.transforms.Resample(48_000, 16_000) | |
# Preprocessing the datasets. | |
# We need to read the aduio files as arrays | |
def speech_file_to_array_fn(batch): | |
speech_array, sampling_rate = torchaudio.load(batch["path"]) | |
batch["speech"] = resampler(speech_array).squeeze().numpy() | |
return batch | |
test_dataset = test_dataset.map(speech_file_to_array_fn) | |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) | |
with torch.no_grad(): | |
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
print("Prediction:", decode_string(processor.batch_decode(predicted_ids))) | |
print("Reference:", test_dataset["sentence"][:2]) | |
``` | |
## Evaluation | |
The model can be evaluated as follows on the Vietnamese test data of Common Voice. | |
```python | |
import torch | |
import torchaudio | |
from datasets import load_dataset, load_metric | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
import re | |
ENCODER = { | |
"ia ": "iê ", | |
"ìa ": "iề ", | |
"ía ": "iế ", | |
"ỉa ": "iể ", | |
"ĩa ": "iễ ", | |
"ịa ": "iệ ", | |
"ya ": "yê ", | |
"ỳa ": "yề ", | |
"ýa ": "yế ", | |
"ỷa ": "yể ", | |
"ỹa ": "yễ ", | |
"ỵa ": "yệ ", | |
"ua ": "uô ", | |
"ùa ": "uồ ", | |
"úa ": "uố ", | |
"ủa ": "uổ ", | |
"ũa ": "uỗ ", | |
"ụa ": "uộ ", | |
"ưa ": "ươ ", | |
"ừa ": "ườ ", | |
"ứa ": "ướ ", | |
"ửa ": "ưở ", | |
"ữa ": "ưỡ ", | |
"ựa ": "ượ ", | |
"ke": "ce", | |
"kè": "cè", | |
"ké": "cé", | |
"kẻ": "cẻ", | |
"kẽ": "cẽ", | |
"kẹ": "cẹ", | |
"kê": "cê", | |
"kề": "cề", | |
"kế": "cế", | |
"kể": "cể", | |
"kễ": "cễ", | |
"kệ": "cệ", | |
"ki": "ci", | |
"kì": "cì", | |
"kí": "cí", | |
"kỉ": "cỉ", | |
"kĩ": "cĩ", | |
"kị": "cị", | |
"ky": "cy", | |
"kỳ": "cỳ", | |
"ký": "cý", | |
"kỷ": "cỷ", | |
"kỹ": "cỹ", | |
"kỵ": "cỵ", | |
"ghe": "ge", | |
"ghè": "gè", | |
"ghé": "gé", | |
"ghẻ": "gẻ", | |
"ghẽ": "gẽ", | |
"ghẹ": "gẹ", | |
"ghê": "gê", | |
"ghề": "gề", | |
"ghế": "gế", | |
"ghể": "gể", | |
"ghễ": "gễ", | |
"ghệ": "gệ", | |
"ngh": "\x80", | |
"uyê": "\x96", | |
"uyề": "\x97", | |
"uyế": "\x98", | |
"uyể": "\x99", | |
"uyễ": "\x9a", | |
"uyệ": "\x9b", | |
"ng": "\x81", | |
"ch": "\x82", | |
"gh": "\x83", | |
"nh": "\x84", | |
"gi": "\x85", | |
"ph": "\x86", | |
"kh": "\x87", | |
"th": "\x88", | |
"tr": "\x89", | |
"uy": "\x8a", | |
"uỳ": "\x8b", | |
"uý": "\x8c", | |
"uỷ": "\x8d", | |
"uỹ": "\x8e", | |
"uỵ": "\x8f", | |
"iê": "\x90", | |
"iề": "\x91", | |
"iế": "\x92", | |
"iể": "\x93", | |
"iễ": "\x94", | |
"iệ": "\x95", | |
"uô": "\x9c", | |
"uồ": "\x9d", | |
"uố": "\x9e", | |
"uổ": "\x9f", | |
"uỗ": "\xa0", | |
"uộ": "\xa1", | |
"ươ": "\xa2", | |
"ườ": "\xa3", | |
"ướ": "\xa4", | |
"ưở": "\xa5", | |
"ưỡ": "\xa6", | |
"ượ": "\xa7", | |
} | |
def decode_string(x): | |
for k, v in list(reversed(list(ENCODER.items()))): | |
x = x.replace(v, k) | |
return x | |
test_dataset = load_dataset("common_voice", "vi", split="test") | |
wer = load_metric("wer") | |
processor = Wav2Vec2Processor.from_pretrained(MODEL) | |
model = Wav2Vec2ForCTC.from_pretrained(MODEL) | |
model.to("cuda") | |
chars_to_ignore_regex = '[\\\+\@\ǀ\,\?\.\!\-\;\:\"\“\%\‘\”\�]' | |
resampler = torchaudio.transforms.Resample(48_000, 16_000) | |
# Preprocessing the datasets. | |
# We need to read the aduio files as arrays | |
def evaluate(batch): | |
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) | |
with torch.no_grad(): | |
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits | |
pred_ids = torch.argmax(logits, dim=-1) | |
batch["pred_strings"] = processor.batch_decode(pred_ids) | |
# decode_string: We replace the encoded letter with the initial letters | |
batch["pred_strings"] = [decode_string(x) for x in batch["pred_strings"]] | |
return batch | |
result = test_dataset.map(evaluate, batched=True, batch_size=8) | |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) | |
``` | |
**Test Result**: 54.55 % | |
## Training | |
The Common Voice `train`, `validation`, and FOSD datasets were used for training as well. | |
The script used for training can be found [here](https://colab.research.google.com/drive/11pP4uVJj4SYZTzGjlCUtOHywlhYqs0cPx) |