|
--- |
|
language: he |
|
|
|
thumbnail: https://avatars1.githubusercontent.com/u/3617152?norod.jpg |
|
widget: |
|
- text: "עוד בימי קדם" |
|
- text: "קוראים לי דורון ואני מעוניין ל" |
|
- text: "קוראים לי איציק ואני חושב ש" |
|
- text: "החתול שלך מאוד חמוד ו" |
|
|
|
license: mit |
|
--- |
|
|
|
# hebrew-distilgpt2 |
|
|
|
A tiny GPT2 based Hebrew text generation model trained on a TPUv3-8 which was made avilable to me via the [TPU Research Cloud](https://sites.research.google/trc/) Program. |
|
|
|
## Dataset |
|
|
|
oscar / unshuffled_deduplicated_he - [Homepage](https://oscar-corpus.com) | [Dataset Permalink](https://huggingface.co/datasets/viewer/?dataset=oscar&config=unshuffled_deduplicated_he) |
|
|
|
The Open Super-large Crawled ALMAnaCH coRpus is a huge multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the goclassy architecture. |
|
|
|
## Training |
|
|
|
* Done on a TPUv3-8 VM using [Huggingface's clm-flax example script](https://github.com/huggingface/transformers/blob/master/examples/flax/language-modeling/run_clm_flax.py) <BR> |
|
* I have made a list of items which might make it easier for other to use this script. The list was posted to [This discussion forum](https://discuss.huggingface.co/t/ideas-for-beginner-friendlier-tpu-vm-clm-training/8351) |
|
|
|
## Usage |
|
|
|
|
|
#### Simple usage sample code |
|
|
|
```python |
|
|
|
#pip install tokenizers==0.10.3 transformers==4.8.0 |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Norod78/hebrew-distilgpt2") |
|
model = AutoModelForCausalLM.from_pretrained("Norod78/hebrew-distilgpt2", pad_token_id=tokenizer.eos_token_id) |
|
|
|
prompt_text = "אני אוהב שוקולד ועוגות" |
|
max_len = 512 |
|
sample_output_num = 3 |
|
seed = 1000 |
|
|
|
import numpy as np |
|
import torch |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count() |
|
|
|
print(f"device: {device}, n_gpu: {n_gpu}") |
|
|
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
if n_gpu > 0: |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
model.to(device) |
|
|
|
encoded_prompt = tokenizer.encode( |
|
prompt_text, add_special_tokens=False, return_tensors="pt") |
|
|
|
encoded_prompt = encoded_prompt.to(device) |
|
|
|
if encoded_prompt.size()[-1] == 0: |
|
input_ids = None |
|
else: |
|
input_ids = encoded_prompt |
|
|
|
print("input_ids = " + str(input_ids)) |
|
|
|
if input_ids != None: |
|
max_len += len(encoded_prompt[0]) |
|
if max_len > 1024: |
|
max_len = 1024 |
|
|
|
print("Updated max_len = " + str(max_len)) |
|
|
|
stop_token = "<|endoftext|>" |
|
new_lines = "\n\n\n" |
|
|
|
sample_outputs = model.generate( |
|
input_ids, |
|
do_sample=True, |
|
max_length=max_len, |
|
top_k=50, |
|
top_p=0.95, |
|
num_return_sequences=sample_output_num |
|
) |
|
|
|
print(100 * '-' + "\n\t\tOutput\n" + 100 * '-') |
|
for i, sample_output in enumerate(sample_outputs): |
|
|
|
text = tokenizer.decode(sample_output, skip_special_tokens=True) |
|
|
|
# Remove all text after the stop token |
|
text = text[: text.find(stop_token) if stop_token else None] |
|
|
|
# Remove all text after 3 newlines |
|
text = text[: text.find(new_lines) if new_lines else None] |
|
|
|
print("\n{}: {}".format(i, text)) |
|
print("\n" + 100 * '-') |
|
|
|
``` |
|
|