mwz's picture
End of training
566e280 verified
metadata
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: Pak-Speech-Processing/urdu-emotion-whisper
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: Pak-Speech-Processing/urdu-emotions
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9166666666666666

Pak-Speech-Processing/urdu-emotion-whisper

This model is a fine-tuned version of openai/whisper-medium on the Pak-Speech-Processing/urdu-emotions dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5604
  • Accuracy: 0.9167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0018 1.0 120 2.0096 0.6667
0.5139 2.0 240 0.8303 0.8667
0.6903 3.0 360 0.8813 0.8833
0.0006 4.0 480 0.3012 0.95
1.5207 5.0 600 0.6310 0.8833
0.0005 6.0 720 0.5993 0.9
0.0004 7.0 840 0.3247 0.9167
0.0001 8.0 960 0.5303 0.9167
0.0001 9.0 1080 0.5530 0.9167
0.0001 10.0 1200 0.5604 0.9167

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2