|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
library_name: transformers |
|
tags: |
|
- api |
|
- open-api |
|
- swagger |
|
- api doc |
|
- api call |
|
- code |
|
- instruction_tuned |
|
- basemodel |
|
- pytorch |
|
- RL Tuned |
|
- text-generation-inferenc |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-generation |
|
--- |
|
# pip-api-expert |
|
|
|
[pipableAi](https://pipable.ai/) |
|
|
|
[colab_notebook](https://colab.research.google.com/drive/1r24CjfOlCj-O0tSQYRrTBRLk9YHiHOhC?usp=sharing) |
|
|
|
## What have we built? |
|
A 1.3 bn state of the art model for api calling , documentation, testing management. |
|
The tasks that the model can accomplish are the following. |
|
|
|
```markdown |
|
1. Convert any bad format text to open api format. |
|
2. Convert any bad format text to mark down format. |
|
3. Given docs and questions in natural language, generate api calls in python. |
|
``` |
|
|
|
## How we built it? |
|
|
|
We used a simulator and a form of policy gradient to train the model to self instruct itself to make documents and then perform executable calls on the document. |
|
|
|
## Mock interface |
|
|
|
https://app.pipable.ai/ |
|
|
|
You can try out the features at the above interface by using our hosted model. |
|
|
|
|
|
## License |
|
The model is open source under apache 2.0. License |
|
|
|
## Usage |
|
|
|
|
|
### Installation |
|
|
|
```bash |
|
pip install transformers |
|
pip install accelerate |
|
``` |
|
|
|
### Prompt |
|
```python |
|
prompt = f"""<question>{}</question> |
|
<doc/code/any tag that explains the task at hand>""" |
|
``` |
|
|
|
### PyTorch |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from accelerate import Accelerator |
|
import torch |
|
path = "PipableAI/pip-api-expert" |
|
model =AutoModelForCausalLM.from_pretrained(path,torch_dtype=torch.bfloat16,device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(path) |
|
prompt = "<question>Perform api call to do task k</question><python_code>" |
|
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") |
|
outputs = model.generate(**inputs, max_new_tokens=1200) |
|
doc = ( |
|
tokenizer.decode(outputs[0][inputs.input_ids.shape[-1]:], skip_special_tokens=True) |
|
) |
|
print(doc) |
|
``` |
|
|
|
|
|
## Examples |
|
|
|
### Markdown Documentation Format for Raw API Docs |
|
|
|
```python |
|
raw_docs = """ |
|
Method access |
|
HTTP |
|
JavaScript |
|
Python |
|
Java |
|
POST |
|
https://slack.com/api/chat.postMessage |
|
Required scopes |
|
Bot tokens |
|
chat:write |
|
User tokens |
|
chat:write |
|
chat:write:user |
|
chat:write:bot |
|
Legacy bot tokens |
|
bot |
|
Content types |
|
application/x-www-form-urlencoded |
|
application/json |
|
Rate limits |
|
Special |
|
Arguments |
|
Required arguments |
|
token |
|
token |
|
·Required |
|
Authentication token bearing required scopes. Tokens should be passed as an HTTP Authorization header or alternatively, as a POST parameter. |
|
Example |
|
xxxx-xxxxxxxxx-xxxx |
|
channel |
|
string |
|
·Required |
|
Channel, private group, or IM channel to send message to. Can be an encoded ID, or a name. See below for more details. |
|
Example |
|
C1234567890 |
|
At least one of |
|
attachmentsblockstext |
|
One of these arguments is required to describe the content of the message. If attachments or blocks are included, text will be used as fallback text for notifications only. |
|
attachments |
|
string |
|
blocks |
|
blocks[] as string |
|
text |
|
string |
|
How this field works and whether it is required depends on other fields you use in your API call. See below for more detail. |
|
Example |
|
Hello world |
|
Optional arguments |
|
as_user |
|
boolean |
|
·Optional |
|
(Legacy) Pass true to post the message as the authed user instead of as a bot. Defaults to false. Can only be used by classic Slack apps. See authorship below. |
|
Example |
|
true |
|
icon_emoji |
|
string |
|
·Optional |
|
Emoji to use as the icon for this message. Overrides icon_url. |
|
Example |
|
:chart_with_upwards_trend: |
|
icon_url |
|
string |
|
·Optional |
|
URL to an image to use as the icon for this message. |
|
Example |
|
http://lorempixel.com/48/48 |
|
link_names |
|
boolean |
|
·Optional |
|
Find and link user groups. No longer supports linking individual users; use syntax shown in Mentioning Users instead. |
|
Example |
|
true |
|
metadata |
|
string |
|
·Optional |
|
JSON object with event_type and event_payload fields, presented as a URL-encoded string. Metadata you post to Slack is accessible to any app or user who is a member of that workspace. |
|
Example |
|
{"event_type": "task_created", "event_payload": { "id": "11223", "title": "Redesign Homepage"}} |
|
mrkdwn |
|
boolean |
|
·Optional |
|
Disable Slack markup parsing by setting to false. Enabled by default. |
|
Default |
|
true |
|
Example |
|
false |
|
parse |
|
string |
|
·Optional |
|
Change how messages are treated. See below. |
|
Example |
|
full |
|
reply_broadcast |
|
boolean |
|
·Optional |
|
Used in conjunction with thread_ts and indicates whether reply should be made visible to everyone in the channel or conversation. Defaults to false. |
|
Example |
|
true |
|
thread_ts |
|
string |
|
·Optional |
|
Provide another message's ts value to make this message a reply. Avoid using a reply's ts value; use its parent instead. |
|
unfurl_links |
|
boolean |
|
·Optional |
|
Pass true to enable unfurling of primarily text-based content. |
|
Example |
|
true |
|
unfurl_media |
|
boolean |
|
·Optional |
|
Pass false to disable unfurling of media content. |
|
Example |
|
false |
|
username |
|
string |
|
·Optional |
|
Set your bot's user name. |
|
Example |
|
My Bot |
|
""" |
|
|
|
question = """ |
|
Convert the above docs to markdown format. |
|
""" |
|
|
|
prompt = f""" |
|
<api_doc> |
|
{raw_docs} |
|
</api_doc> |
|
<question> |
|
{question} |
|
</question> |
|
<response> |
|
""" |
|
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") |
|
outputs = model.generate(**inputs, max_new_tokens=1800) |
|
doc = ( |
|
tokenizer.decode(outputs[0][inputs.input_ids.shape[-1]:], skip_special_tokens=True) |
|
) |
|
print(doc) |
|
``` |
|
### OpenAPI Documentation Format for Raw API Docs |
|
|
|
```python |
|
raw_docs = """ |
|
Method access |
|
HTTP |
|
JavaScript |
|
Python |
|
Java |
|
GET |
|
https://slack.com/api/users.list |
|
Required scopes |
|
Bot tokens |
|
users:read |
|
User tokens |
|
users:read |
|
Legacy bot tokens |
|
bot |
|
Content types |
|
application/x-www-form-urlencoded |
|
Rate limits |
|
Tier 2 |
|
Arguments |
|
Required arguments |
|
token |
|
token |
|
·Required |
|
Authentication token bearing required scopes. Tokens should be passed as an HTTP Authorization header or alternatively, as a POST parameter. |
|
|
|
Example |
|
xxxx-xxxxxxxxx-xxxx |
|
Optional arguments |
|
cursor |
|
string |
|
·Optional |
|
Paginate through collections of data by setting the cursor parameter to a next_cursor attribute returned by a previous request's response_metadata. Default value fetches the first "page" of the collection. See pagination for more detail. |
|
|
|
Example |
|
dXNlcjpVMDYxTkZUVDI= |
|
include_locale |
|
boolean |
|
·Optional |
|
Set this to true to receive the locale for users. Defaults to false |
|
|
|
Example |
|
true |
|
limit |
|
number |
|
·Optional |
|
The maximum number of items to return. Fewer than the requested number of items may be returned, even if the end of the users list hasn't been reached. Providing no limit value will result in Slack attempting to deliver you the entire result set. If the collection is too large you may experience limit_required or HTTP 500 errors. |
|
|
|
Default |
|
0 |
|
Example |
|
20 |
|
team_id |
|
string |
|
·Optional |
|
encoded team id to list users in, required if org token is used |
|
|
|
Example |
|
T1234567890 |
|
""" |
|
|
|
question = """ |
|
Parse the docs to detailed openapi format, do not include reponse. |
|
""" |
|
|
|
prompt = f""" |
|
<api_doc> |
|
{raw_docs} |
|
</api_doc> |
|
<question> |
|
{question} |
|
</question> |
|
<json> |
|
""" |
|
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") |
|
outputs = model.generate(**inputs, max_new_tokens=1800) |
|
doc = ( |
|
tokenizer.decode(outputs[0][inputs.input_ids.shape[-1]:], skip_special_tokens=True) |
|
) |
|
print(doc) |
|
``` |
|
### Python code to call an API based on the documentation and the question. |
|
|
|
```python |
|
docs = """ |
|
{ |
|
"openapi": "3.0.0", |
|
"info": { |
|
"version": "1.0.0", |
|
"title": "Slack API", |
|
"description": "API for Slack", |
|
"termsOfService": "https://slack.com/terms-of-service", |
|
"contact": { |
|
"name": "Slack", |
|
"url": "https://slack.com", |
|
"email": "support@slack.com" |
|
}, |
|
"license": { |
|
"name": "Apache 2.0", |
|
"url": "https://www.apache.org/licenses/LICENSE-2.0" |
|
} |
|
}, |
|
"servers": [ |
|
{ |
|
"url": "https://slack.com/api", |
|
"description": "API server" |
|
} |
|
], |
|
"paths": { |
|
"/chat/postMessage": { |
|
"post": { |
|
"description": "Send a message to a channel or user", |
|
"parameters": [ |
|
{ |
|
"name": "token", |
|
"in": "query", |
|
"required": true, |
|
"description": "Bot token or user token", |
|
"schema": { |
|
"type": "string" |
|
} |
|
}, |
|
{ |
|
"name": "channel", |
|
"in": "query", |
|
"required": true, |
|
"description": "The ID of the channel or user to send the message to", |
|
"schema": { |
|
"type": "string" |
|
} |
|
}, |
|
{ |
|
"name": "text", |
|
"in": "query", |
|
"required": true, |
|
"description": "The message content", |
|
"schema": { |
|
"type": "string" |
|
} |
|
}, |
|
{ |
|
"name": "as_user", |
|
"in": "query", |
|
"required": false, |
|
"description": "Pass true to post the message as the authed user instead of as a bot", |
|
"schema": { |
|
"type": "boolean" |
|
} |
|
}, |
|
{ |
|
"name": "icon_emoji", |
|
"in": "query", |
|
"required": false, |
|
"description": "Emoji to use as the icon for this message", |
|
"schema": { |
|
"type": "string" |
|
} |
|
}, |
|
{ |
|
"name": "icon_url", |
|
"in": "query", |
|
"required": false, |
|
"description": "URL to an image to use as the icon for this message", |
|
"schema": { |
|
"type": "string" |
|
} |
|
}, |
|
{ |
|
"name": "link_names", |
|
"in": "query", |
|
"required": false, |
|
"description": "Find and link user groups. No longer supports linking individual users; use syntax shown in Mentioning Users instead", |
|
"schema": { |
|
"type": "boolean" |
|
} |
|
}, |
|
{ |
|
"name": "unfurl_links", |
|
"in": "query", |
|
"required": false, |
|
"description": "Pass true to enable unfurling of primarily text-based content", |
|
"schema": { |
|
"type": "boolean" |
|
} |
|
}, |
|
{ |
|
"name": "unfurl_media", |
|
"in": "query", |
|
"required": false, |
|
"description": "Pass false to disable unfurling of media content", |
|
"schema": { |
|
"type": "boolean" |
|
} |
|
}, |
|
{ |
|
"name": "username", |
|
"in": "query", |
|
"required": false, |
|
"description": "Set your bot's user name", |
|
"schema": { |
|
"type": "string" |
|
} |
|
} |
|
], |
|
"responses": { |
|
"200": { |
|
"description": "OK", |
|
"schema": { |
|
"type": "string" |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
""" |
|
|
|
instructions = f""" |
|
- Use base url: "https://slack.com/api" |
|
- Use above api docs. |
|
- Use and import requests library. |
|
- strictly show the reponse in code. |
|
""" |
|
|
|
question = """ |
|
Send message 'Hi, please check out https://pipable.ai.', to channel '@general'. |
|
Use token as 'xoxb-123123123123-12312312312312-XxxxxxXXxxxx' |
|
""" |
|
|
|
prompt = f""" |
|
<docs> |
|
{docs} |
|
</docs> |
|
<instructions> |
|
{instructions} |
|
</instructions> |
|
<question> |
|
Write a python code for question: |
|
{question} |
|
</question> |
|
<python_code> |
|
""" |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") |
|
outputs = model.generate(**inputs, max_new_tokens=500) |
|
code = ( |
|
tokenizer.decode(outputs[0][inputs.input_ids.shape[-1]:], skip_special_tokens=True) |
|
) |
|
print(code) |
|
``` |
|
### Team |
|
Avi Kothari, Pratham Gupta, Ritvik Aryan Kalra, Soham Acharya , Gyan Ranjan |