|
--- |
|
base_model: Ransaka/sinhala-ocr-model |
|
model-index: |
|
- name: sinhala-ocr-model-v2 |
|
results: [] |
|
pipeline_tag: image-to-text |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# TrOCR-Sinhala |
|
|
|
See training metrics tab for performance details. |
|
|
|
## Model description |
|
|
|
This model is finetuned version of Microsoft [TrOCR Printed](https://huggingface.co/microsoft/trocr-base-printed) |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Example |
|
```python |
|
from PIL import Image |
|
import requests |
|
from io import BytesIO |
|
|
|
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, AutoTokenizer |
|
|
|
image_url = "https://datasets-server.huggingface.co/assets/Ransaka/sinhala_synthetic_ocr/--/bf7c8a455b564cd73fe035031e19a5f39babb73b/--/default/train/0/image/image.jpg" |
|
response = requests.get(image_url) |
|
img = Image.open(BytesIO(response.content)) |
|
|
|
processor = TrOCRProcessor.from_pretrained('Ransaka/TrOCR-Sinhala') |
|
model = VisionEncoderDecoderModel.from_pretrained('Ransaka/TrOCR-Sinhala') |
|
model.to("cuda:0") |
|
|
|
pixel_values = processor(img, return_tensors="pt").pixel_values.to('cuda:0') |
|
generated_ids = model.generate(pixel_values,num_beams=2,early_stopping=True) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
generated_text #දිවයිනට බලයට ඇති ආපදා තත්ත්වය හමුවේ සබරගමුව පළාතේ |
|
``` |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.16.0 |
|
- Tokenizers 0.15.0 |