|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: HuggingFaceTB/SmolLM2-360M |
|
tags: |
|
- generated_from_trainer |
|
- axolotl |
|
datasets: |
|
- ReDiX/everyday-conversations-ita |
|
- ReDiX/DataForge |
|
language: |
|
- it |
|
- en |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.5.0` |
|
```yaml |
|
base_model: HuggingFaceTB/SmolLM2-360M |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: ./dataforge |
|
type: chat_template |
|
|
|
field_messages: conversations |
|
message_field_role: from |
|
message_field_content: value |
|
|
|
- path: HuggingFaceTB/smol-smoltalk |
|
type: chat_template |
|
|
|
field_messages: messages |
|
message_field_role: role |
|
message_field_content: content |
|
|
|
chat_template: chatml |
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.1 |
|
output_dir: ./outputs/smollm360m |
|
|
|
sequence_len: 8192 |
|
sample_packing: true |
|
eval_sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
wandb_project: axolotl |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: smollm2 |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 4 |
|
num_epochs: 2 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 1.0e-03 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 5 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
pad_token: "<|im_end|>" |
|
eos_token: "<|im_end|>" |
|
``` |
|
|
|
</details><br> |
|
|
|
# SmolLM2 360M Instruct ITA |
|
|
|
This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M) on the [smol-smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smol-smoltalk) dataset and on the [ReDiX/DataForge](https://huggingface.co/datasets/ReDiX/DataForge). |
|
Our datasets is a mixture of open source italian datasets and [ReDiX/everyday-conversations-ita](https://huggingface.co/datasets/ReDiX/everyday-conversations-ita) |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8925 |
|
|
|
## Model description |
|
|
|
This model is an experiment to test out the [ReDiX/everyday-conversations-ita](https://huggingface.co/datasets/ReDiX/everyday-conversations-ita) dataset. |
|
|
|
## Intended uses & limitations |
|
|
|
Simple and very basic chat in italian and english |
|
|
|
## Training and evaluation data |
|
|
|
| Model | m_mmlu_it | arc_it | hellaswag_it | |
|
|:------:|:----------:|:-------:|:-------------:| |
|
| Qwen2.5-0.5-Instruct | **37.05** | 27.54 | 35.73 | |
|
| ReDiX/SmolLM2-360M-Instruct-ita | 24.94 | **28.40** | **35.96** | |
|
|
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| No log | 0.0003 | 1 | 1.3366 | |
|
| 1.0595 | 0.2501 | 774 | 1.0840 | |
|
| 1.0194 | 0.5002 | 1548 | 1.0139 | |
|
| 1.0075 | 0.7504 | 2322 | 0.9701 | |
|
| 1.0286 | 1.0005 | 3096 | 0.9269 | |
|
| 0.7871 | 1.2506 | 3870 | 0.9111 | |
|
| 0.7481 | 1.5007 | 4644 | 0.8960 | |
|
| 0.7429 | 1.7508 | 5418 | 0.8925 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |