metadata
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-cased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ner_model_2
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: test
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.8793253347243958
- name: Recall
type: recall
value: 0.8953611898016998
- name: F1
type: f1
value: 0.8872708132292307
- name: Accuracy
type: accuracy
value: 0.9776031011090772
ner_model_2
This model is a fine-tuned version of distilbert/distilbert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1230
- Precision: 0.8793
- Recall: 0.8954
- F1: 0.8873
- Accuracy: 0.9776
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1882 | 1.0 | 878 | 0.1169 | 0.8557 | 0.8798 | 0.8676 | 0.9744 |
0.0376 | 2.0 | 1756 | 0.1160 | 0.8811 | 0.8962 | 0.8886 | 0.9779 |
0.0202 | 3.0 | 2634 | 0.1230 | 0.8793 | 0.8954 | 0.8873 | 0.9776 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3