|
--- |
|
license: apache-2.0 |
|
base_model: stevhliu/my_awesome_billsum_model |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: Modelo_Resumen |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Modelo_Resumen |
|
|
|
Éste modelo fue creado para la clase del Dr. Gendry |
|
- Loss: 2.2007 |
|
- Rouge1: 0.1957 |
|
- Rouge2: 0.095 |
|
- Rougel: 0.1645 |
|
- Rougelsum: 0.1645 |
|
- Gen Len: 19.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 62 | 2.3594 | 0.1957 | 0.0921 | 0.1645 | 0.1645 | 19.0 | |
|
| No log | 2.0 | 124 | 2.3268 | 0.194 | 0.0898 | 0.1631 | 0.1631 | 19.0 | |
|
| No log | 3.0 | 186 | 2.3013 | 0.194 | 0.0923 | 0.1649 | 0.1648 | 19.0 | |
|
| No log | 4.0 | 248 | 2.2776 | 0.195 | 0.0932 | 0.166 | 0.1659 | 19.0 | |
|
| No log | 5.0 | 310 | 2.2620 | 0.1944 | 0.0925 | 0.165 | 0.1649 | 19.0 | |
|
| No log | 6.0 | 372 | 2.2474 | 0.1935 | 0.0917 | 0.1648 | 0.1646 | 19.0 | |
|
| No log | 7.0 | 434 | 2.2362 | 0.1931 | 0.0929 | 0.1642 | 0.1642 | 19.0 | |
|
| No log | 8.0 | 496 | 2.2276 | 0.1937 | 0.0935 | 0.1642 | 0.1644 | 19.0 | |
|
| 2.4678 | 9.0 | 558 | 2.2203 | 0.1941 | 0.0938 | 0.164 | 0.164 | 19.0 | |
|
| 2.4678 | 10.0 | 620 | 2.2141 | 0.195 | 0.0954 | 0.1648 | 0.1648 | 19.0 | |
|
| 2.4678 | 11.0 | 682 | 2.2095 | 0.1956 | 0.096 | 0.1649 | 0.1649 | 19.0 | |
|
| 2.4678 | 12.0 | 744 | 2.2055 | 0.1952 | 0.0955 | 0.1645 | 0.1645 | 19.0 | |
|
| 2.4678 | 13.0 | 806 | 2.2030 | 0.1945 | 0.0947 | 0.1639 | 0.1638 | 19.0 | |
|
| 2.4678 | 14.0 | 868 | 2.2014 | 0.1956 | 0.095 | 0.1644 | 0.1644 | 19.0 | |
|
| 2.4678 | 15.0 | 930 | 2.2007 | 0.1957 | 0.095 | 0.1645 | 0.1645 | 19.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|