Rodrigo1771's picture
End of training
e85d1ad verified
metadata
library_name: transformers
license: apache-2.0
base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
tags:
  - token-classification
  - generated_from_trainer
datasets:
  - Rodrigo1771/combined-train-drugtemist-dev-85-ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: output
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: Rodrigo1771/combined-train-drugtemist-dev-85-ner
          type: Rodrigo1771/combined-train-drugtemist-dev-85-ner
          config: CombinedTrainDrugTEMISTDevNER
          split: validation
          args: CombinedTrainDrugTEMISTDevNER
        metrics:
          - name: Precision
            type: precision
            value: 0.09400470929179497
          - name: Recall
            type: recall
            value: 0.9540441176470589
          - name: F1
            type: f1
            value: 0.17114591920857378
          - name: Accuracy
            type: accuracy
            value: 0.7890274211487498

output

This model is a fine-tuned version of PlanTL-GOB-ES/bsc-bio-ehr-es on the Rodrigo1771/combined-train-drugtemist-dev-85-ner dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1806
  • Precision: 0.0940
  • Recall: 0.9540
  • F1: 0.1711
  • Accuracy: 0.7890

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3191 1.0 541 0.8151 0.0825 0.9605 0.1520 0.7763
0.1619 2.0 1082 0.8332 0.0922 0.9458 0.168 0.7901
0.11 3.0 1623 1.1094 0.0899 0.9494 0.1643 0.7738
0.0764 4.0 2164 1.1206 0.0885 0.9449 0.1618 0.7740
0.0567 5.0 2705 1.1806 0.0940 0.9540 0.1711 0.7890
0.0428 6.0 3246 1.3138 0.0901 0.9458 0.1645 0.7827
0.0332 7.0 3787 1.4009 0.0922 0.9384 0.1679 0.7874
0.0257 8.0 4328 1.5611 0.0904 0.9412 0.1650 0.7791
0.022 9.0 4869 1.5934 0.0921 0.9467 0.1679 0.7835
0.0181 10.0 5410 1.6103 0.0922 0.9439 0.1680 0.7863

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1