berttest2 / README.md
RtwC's picture
End of training
56cb77e
metadata
base_model: bert-base-chinese
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: berttest2
    results: []

berttest2

This model is a fine-tuned version of bert-base-chinese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0206
  • Precision: 0.9610
  • Recall: 0.9653
  • F1: 0.9631
  • Accuracy: 0.9956

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.028 1.0 2609 0.0225 0.9385 0.9350 0.9368 0.9932
0.011 2.0 5218 0.0182 0.9542 0.9592 0.9567 0.9951
0.0044 3.0 7827 0.0206 0.9610 0.9653 0.9631 0.9956

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1