|
--- |
|
license: gemma |
|
base_model: google/gemma-2-2b |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter19_sftsd2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# collapse_gemma-2-2b_hs2_accumulatesubsample_iter19_sftsd2 |
|
|
|
This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2160 |
|
- Num Input Tokens Seen: 4969888 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 2 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |
|
|:-------------:|:------:|:----:|:---------------:|:-----------------:| |
|
| No log | 0 | 0 | 1.3909 | 0 | |
|
| 1.3282 | 0.0529 | 5 | 1.2782 | 268552 | |
|
| 1.0606 | 0.1058 | 10 | 1.2285 | 533864 | |
|
| 0.9673 | 0.1587 | 15 | 1.2222 | 799192 | |
|
| 0.7577 | 0.2116 | 20 | 1.2580 | 1065712 | |
|
| 0.7055 | 0.2646 | 25 | 1.2578 | 1334136 | |
|
| 0.6601 | 0.3175 | 30 | 1.2654 | 1600744 | |
|
| 0.5988 | 0.3704 | 35 | 1.2742 | 1865248 | |
|
| 0.5391 | 0.4233 | 40 | 1.2674 | 2126184 | |
|
| 0.5215 | 0.4762 | 45 | 1.2479 | 2389800 | |
|
| 0.4847 | 0.5291 | 50 | 1.2539 | 2652896 | |
|
| 0.3997 | 0.5820 | 55 | 1.2492 | 2917336 | |
|
| 0.4981 | 0.6349 | 60 | 1.2381 | 3182592 | |
|
| 0.422 | 0.6878 | 65 | 1.2312 | 3444800 | |
|
| 0.4256 | 0.7407 | 70 | 1.2293 | 3706456 | |
|
| 0.3611 | 0.7937 | 75 | 1.2366 | 3968992 | |
|
| 0.4669 | 0.8466 | 80 | 1.2204 | 4236704 | |
|
| 0.3871 | 0.8995 | 85 | 1.2243 | 4494952 | |
|
| 0.4819 | 0.9524 | 90 | 1.2215 | 4752080 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|