|
--- |
|
license: gemma |
|
base_model: google/gemma-2-2b |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter4_sftsd0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# collapse_gemma-2-2b_hs2_accumulatesubsample_iter4_sftsd0 |
|
|
|
This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1654 |
|
- Num Input Tokens Seen: 5196150 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 0 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |
|
|:-------------:|:------:|:----:|:---------------:|:-----------------:| |
|
| No log | 0 | 0 | 1.3909 | 0 | |
|
| 1.317 | 0.0543 | 5 | 1.2676 | 278888 | |
|
| 1.2103 | 0.1087 | 10 | 1.1836 | 560856 | |
|
| 1.1544 | 0.1630 | 15 | 1.1540 | 844528 | |
|
| 1.1964 | 0.2174 | 20 | 1.1470 | 1128496 | |
|
| 0.9374 | 0.2717 | 25 | 1.1433 | 1409880 | |
|
| 0.9893 | 0.3261 | 30 | 1.1511 | 1694568 | |
|
| 0.9799 | 0.3804 | 35 | 1.1555 | 1983024 | |
|
| 0.9148 | 0.4348 | 40 | 1.1759 | 2267152 | |
|
| 0.872 | 0.4891 | 45 | 1.1720 | 2553896 | |
|
| 0.7683 | 0.5435 | 50 | 1.1734 | 2832280 | |
|
| 0.7309 | 0.5978 | 55 | 1.1710 | 3116288 | |
|
| 0.7317 | 0.6522 | 60 | 1.1715 | 3400728 | |
|
| 0.6844 | 0.7065 | 65 | 1.1663 | 3683408 | |
|
| 0.6955 | 0.7609 | 70 | 1.1680 | 3959976 | |
|
| 0.6387 | 0.8152 | 75 | 1.1771 | 4241544 | |
|
| 0.6381 | 0.8696 | 80 | 1.1675 | 4526832 | |
|
| 0.6677 | 0.9239 | 85 | 1.1682 | 4803712 | |
|
| 0.6433 | 0.9783 | 90 | 1.1650 | 5085136 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|