library_name: transformers
license: apache-2.0
Model Details
Model Developers: Sogang University SGEconFinlab(<https://sc.sogang.ac.kr/aifinlab/)
Model Description
This model is a language model specialized in economics and finance. This was learned with various economic/finance-related data. The data sources are listed below, and we are not releasing the data we trained on because it was used for research/policy purposes. If you wish to use the original data rather than our training data, please contact the original author directly for permission to use it.
- Developed by: Sogang University SGEconFinlab(https://sc.sogang.ac.kr/aifinlab/)
- License: apache-2.0
- Base Model: yanolja/KoSOLAR-10.7B-v0.2(https://huggingface.co/yanolja/KoSOLAR-10.7B-v0.2)
How to Get Started with the Model
peft_model_id = "SGEcon/KoSOLAR-10.7B-v0.2_fin_v4"
config = PeftConfig.from_pretrained(peft_model_id)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map={"":0})
model = PeftModel.from_pretrained(model, peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model.eval()
import re
def gen(x):
inputs = tokenizer(f"### ์ง๋ฌธ: {x}\n\n### ๋ต๋ณ:", return_tensors='pt', return_token_type_ids=False)
# Move data to GPU (if available)
inputs = {k: v.to(device="cuda" if torch.cuda.is_available() else "cpu") for k, v in inputs.items()}
gened = model.generate(
**inputs,
max_new_tokens=256,
early_stopping=True,
num_return_sequences=4,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
temperature=0.9,
top_p=0.8,
top_k=50
)
complete_answers = []
for gen_seq in gened:
decoded = tokenizer.decode(gen_seq, skip_special_tokens=True).strip()
# Extract only the text after the string "### ๋ต๋ณ:"
first_answer_start_idx = decoded.find("### ๋ต๋ณ:") + len("### ๋ต๋ณ:")
temp_answer = decoded[first_answer_start_idx:].strip()
# Extract only text up to the second "### ๋ต๋ณ:" string
second_answer_start_idx = temp_answer.find("### ๋ต๋ณ:")
if second_answer_start_idx != -1:
complete_answer = temp_answer[:second_answer_start_idx].strip()
else:
complete_answer = temp_answer # ๋ ๋ฒ์งธ "### ๋ต๋ณ:"์ด ์๋ ๊ฒฝ์ฐ ์ ์ฒด ๋ต๋ณ ๋ฐํ
complete_answers.append(complete_answer)
return complete_answers
Training Details
First, we loaded the base model quantized to 4 bits. It can significantly reduce the amount of memory required to store the model's weights and intermediate computation results, which is beneficial for deploying models in environments with limited memory resources. It can also provide faster inference speeds. Then,
Training Data
- ํ๊ตญ์ํ: ๊ฒฝ์ ๊ธ์ต์ฉ์ด 700์ (https://www.bok.or.kr/portal/bbs/B0000249/view.do?nttId=235017&menuNo=200765)
- ๊ธ์ต๊ฐ๋ ์: ๊ธ์ต์๋น์ ์ ๋ณด ํฌํธ ํ์ธ ๊ธ์ต์ฉ์ด์ฌ์ (https://fine.fss.or.kr/fine/fnctip/fncDicary/list.do?menuNo=900021)
- KDI ๊ฒฝ์ ์ ๋ณด์ผํฐ: ์์ฌ ์ฉ์ด์ฌ์ (https://eiec.kdi.re.kr/material/wordDic.do)
- ํ๊ตญ๊ฒฝ์ ์ ๋ฌธ/ํ๊ฒฝ๋ท์ปด: ํ๊ฒฝ๊ฒฝ์ ์ฉ์ด์ฌ์ (https://terms.naver.com/list.naver?cid=42107&categoryId=42107), ์ค๋์ TESAT(https://www.tesat.or.kr/bbs.frm.list/tesat_study?s_cateno=1), ์ค๋์ ์ฃผ๋์ด TESAT(https://www.tesat.or.kr/bbs.frm.list/tesat_study?s_cateno=5), ์๊ธ์๊ธํ๊ฒฝ(https://sgsg.hankyung.com/tesat/study)
- ์ค์๋ฒค์ฒ๊ธฐ์ ๋ถ/๋ํ๋ฏผ๊ตญ์ ๋ถ: ์ค์๋ฒค์ฒ๊ธฐ์ ๋ถ ์ ๋ฌธ์ฉ์ด(https://terms.naver.com/list.naver?cid=42103&categoryId=42103)
- ๊ณ ์ฑ์ผ/๋ฒ๋ฌธ์ถํ์ฌ: ํ๊ณยท์ธ๋ฌด ์ฉ์ด์ฌ์ (https://terms.naver.com/list.naver?cid=51737&categoryId=51737)
- ๋งจํ์ ๊ฒฝ์ ํ 8ํ Word Index
- yanolja/KoSOLAR-10.7B-v0.2(<yanolja/KoSOLAR-10.7B-v0.2>)
Training Procedure
Training Hyperparameters
Hyperparameter | SGEcon/KoSOLAR-10.7B-v0.2_fin_v4 |
---|---|
Lora Method | Lora |
load in 4 bit | True |
learning rate | 1e-5 |
lr scheduler | linear |
lora alpa | 16 |
lora rank | 16 |
lora dropout | 0.05 |
optim | paged_adamw_32bit |
target_modules | q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj, lm_head |
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Results
[More Information Needed]