library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
Model Details
Model Developers: Sogang University SGEconFinlab
Model Description
This model is a language model specialized in economics and finance. This was learned with various economic/finance-related data. The data sources are listed below, and we are not releasing the data we trained on because it was used for research/policy purposes. If you wish to use the original data rather than our training data, please contact the original author directly for permission to use it.
- Developed by: [Sogang University SGEconFinlab]
- Language(s) (NLP): [Ko/En]
- License: [apache-2.0]
- Base Model: [yanolja/KoSOLAR-10.7B-v0.2]
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
How to Get Started with the Model
peft_model_id = "SGEcon/KoSOLAR-10.7B-v0.2_fin_v4" config = PeftConfig.from_pretrained(peft_model_id) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map={"":0}) model = PeftModel.from_pretrained(model, peft_model_id) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model.eval()
import re def gen(x): inputs = tokenizer(f"### ์ง๋ฌธ: {x}\n\n### ๋ต๋ณ:", return_tensors='pt', return_token_type_ids=False)
# ๋ฐ์ดํฐ๋ฅผ GPU๋ก ์ด๋(์ฌ์ฉ ๊ฐ๋ฅํ ๊ฒฝ์ฐ)
inputs = {k: v.to(device="cuda" if torch.cuda.is_available() else "cpu") for k, v in inputs.items()}
gened = model.generate(
**inputs,
max_new_tokens=256,
early_stopping=True,
num_return_sequences=4, # 4๊ฐ์ ๋ต๋ณ์ ์์ฑํ๋๋ก ์ค์ (๋ต๋ณ ๊ฐ์ ์ค์ ๊ฐ๋ฅ)
do_sample=True,
eos_token_id=tokenizer.eos_token_id, # EOS ํ ํฐ ID ์ฌ์ฉ
temperature=0.9,
top_p=0.8,
top_k=50
)
complete_answers = []
for gen_seq in gened:
decoded = tokenizer.decode(gen_seq, skip_special_tokens=True).strip()
# "### ๋ต๋ณ:" ๋ฌธ์์ด ์ดํ์ ํ
์คํธ๋ง ์ถ์ถ
first_answer_start_idx = decoded.find("### ๋ต๋ณ:") + len("### ๋ต๋ณ:")
temp_answer = decoded[first_answer_start_idx:].strip()
# ๋ ๋ฒ์งธ "### ๋ต๋ณ:" ๋ฌธ์์ด ์ด์ ๊น์ง์ ํ
์คํธ๋ง ์ถ์ถ
second_answer_start_idx = temp_answer.find("### ๋ต๋ณ:")
if second_answer_start_idx != -1:
complete_answer = temp_answer[:second_answer_start_idx].strip()
else:
complete_answer = temp_answer # ๋ ๋ฒ์งธ "### ๋ต๋ณ:"์ด ์๋ ๊ฒฝ์ฐ ์ ์ฒด ๋ต๋ณ ๋ฐํ
complete_answers.append(complete_answer)
return complete_answers
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]