SGEcon's picture
Update README.md
b13807a verified
|
raw
history blame
5.95 kB
metadata
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation

Model Details

Model Developers: Sogang University SGEconFinlab

Model Description

This model is a language model specialized in economics and finance. This was learned with various economic/finance-related data. The data sources are listed below, and we are not releasing the data we trained on because it was used for research/policy purposes. If you wish to use the original data rather than our training data, please contact the original author directly for permission to use it.

  • Developed by: [Sogang University SGEconFinlab]
  • Language(s) (NLP): [Ko/En]
  • License: [apache-2.0]
  • Base Model: [yanolja/KoSOLAR-10.7B-v0.2]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

How to Get Started with the Model

peft_model_id = "SGEcon/KoSOLAR-10.7B-v0.2_fin_v4" config = PeftConfig.from_pretrained(peft_model_id) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map={"":0}) model = PeftModel.from_pretrained(model, peft_model_id) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model.eval()

import re def gen(x): inputs = tokenizer(f"### ์งˆ๋ฌธ: {x}\n\n### ๋‹ต๋ณ€:", return_tensors='pt', return_token_type_ids=False)

# ๋ฐ์ดํ„ฐ๋ฅผ GPU๋กœ ์ด๋™(์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ๊ฒฝ์šฐ)
inputs = {k: v.to(device="cuda" if torch.cuda.is_available() else "cpu") for k, v in inputs.items()}

gened = model.generate(
    **inputs,
    max_new_tokens=256,
    early_stopping=True,
    num_return_sequences=4,  # 4๊ฐœ์˜ ๋‹ต๋ณ€์„ ์ƒ์„ฑํ•˜๋„๋ก ์„ค์ •(๋‹ต๋ณ€ ๊ฐœ์ˆ˜ ์„ค์ • ๊ฐ€๋Šฅ)
    do_sample=True,
    eos_token_id=tokenizer.eos_token_id,  # EOS ํ† ํฐ ID ์‚ฌ์šฉ
    temperature=0.9,
    top_p=0.8,
    top_k=50
)

complete_answers = []
for gen_seq in gened:
    decoded = tokenizer.decode(gen_seq, skip_special_tokens=True).strip()

    # "### ๋‹ต๋ณ€:" ๋ฌธ์ž์—ด ์ดํ›„์˜ ํ…์ŠคํŠธ๋งŒ ์ถ”์ถœ
    first_answer_start_idx = decoded.find("### ๋‹ต๋ณ€:") + len("### ๋‹ต๋ณ€:")
    temp_answer = decoded[first_answer_start_idx:].strip()

    # ๋‘ ๋ฒˆ์งธ "### ๋‹ต๋ณ€:" ๋ฌธ์ž์—ด ์ด์ „๊นŒ์ง€์˜ ํ…์ŠคํŠธ๋งŒ ์ถ”์ถœ
    second_answer_start_idx = temp_answer.find("### ๋‹ต๋ณ€:")
    if second_answer_start_idx != -1:
        complete_answer = temp_answer[:second_answer_start_idx].strip()
    else:
        complete_answer = temp_answer  # ๋‘ ๋ฒˆ์งธ "### ๋‹ต๋ณ€:"์ด ์—†๋Š” ๊ฒฝ์šฐ ์ „์ฒด ๋‹ต๋ณ€ ๋ฐ˜ํ™˜
    
    complete_answers.append(complete_answer)

return complete_answers

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]