metadata
base_model: SQAI/streetlight_sql_embedding
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2161
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: longitude of streetlight
sentences:
- >-
"What is the recent status of the streetlight at the given longitude,
considering the current overload conditions?"
- >-
"Has there been any recent failure in the metering components of the
streetlights affecting data reporting, and was the control mode switch
identifier used for the changes?"
- >-
"Can you tell me when was the most recent instance when the current
exceeded the safe operating threshold, causing a streetlight failure?"
- source_sentence: Ambient light level detected by the streetlight, measured in lux
sentences:
- >-
"What is the count of how many times the most recent streetlight failure
has been switched on before the error occurred?"
- >-
"What is the recent data on maximum load current indicating potential
risk and any recent communication issues with the lux sensors?"
- >-
"What is the recent dimming schedule applied, the detected ambient light
level in lux, and were there any recent issues or failures with the
driver of the streetlight?"
- source_sentence: >-
Timestamp of the latest data recorded or action performed by the
streetlight
sentences:
- >-
"What is the recent failure rate of the relay responsible for operating
the DALI dimming protocol in our streetlights?"
- >-
"Can you provide the recent instances where the current drawn by the
streetlights was lower than expected, sorted by the unique streetlight
identifier and street name?"
- >-
"What was the most recent threshold level set to stop recording
flickering events using the SIM card code in the streetlight?"
- source_sentence: Current exceeds the safe operating threshold for the streetlight (failure)
sentences:
- >-
"What is the hardware version of the recent streetlight experiencing
faults in its lux module affecting light level sensing and control?"
- >-
"Can you provide the recent instances where the current drawn by the
streetlights was lower than expected, sorted by the unique streetlight
identifier and street name?"
- >-
"Can you identify the most recent instance when the power under load was
higher than normal, possibly indicating inefficiency or a fault, and
concurrently, the voltage exceeded the safe operating levels for the
streetlights?"
- source_sentence: >-
Voltage supplied is below the safe operating level for the streetlight
(failure)
sentences:
- >-
"What is the recent AC voltage supply to the streetlight and the SIM
card code used for its cellular network communication?"
- >-
"What was the most recent threshold level set to stop recording
flickering events using the SIM card code in the streetlight?"
- >-
"What is the most recent internal temperature reading for the operating
conditions of the streetlight?"
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.004149377593360996
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.02074688796680498
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.04149377593360996
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.06224066390041494
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.004149377593360996
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.006915629322268326
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.008298755186721992
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.006224066390041493
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.004149377593360996
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.02074688796680498
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.04149377593360996
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.06224066390041494
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.028846821098581887
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.018665612856484225
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.024320046307682447
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.004149377593360996
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.02074688796680498
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.04149377593360996
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.06224066390041494
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.004149377593360996
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.006915629322268326
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.008298755186721992
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.006224066390041493
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.004149377593360996
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.02074688796680498
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.04149377593360996
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.06224066390041494
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.028846821098581887
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.018665612856484225
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.024320046307682447
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.008298755186721992
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.02074688796680498
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.04149377593360996
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.058091286307053944
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.008298755186721992
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.006915629322268326
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.008298755186721992
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0058091286307053935
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.008298755186721992
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.02074688796680498
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.04149377593360996
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.058091286307053944
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.02917470145123319
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.020424158598432458
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.02622693528356527
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.008298755186721992
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.02074688796680498
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.03734439834024896
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.05394190871369295
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.008298755186721992
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.006915629322268326
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.007468879668049794
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.005394190871369295
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.008298755186721992
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.02074688796680498
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.03734439834024896
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.05394190871369295
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.027438863848135625
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.019311071593229267
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.02603525046406888
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.008298755186721992
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.012448132780082987
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.029045643153526972
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.05394190871369295
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.008298755186721992
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.004149377593360996
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.005809128630705394
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.005394190871369295
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.008298755186721992
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.012448132780082987
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.029045643153526972
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.05394190871369295
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.025512460997908278
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.017038793387341104
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.02259750227693111
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from SQAI/streetlight_sql_embedding. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: SQAI/streetlight_sql_embedding
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("SQAI/streetlight_sql_embedding2")
sentences = [
'Voltage supplied is below the safe operating level for the streetlight (failure)',
'"What is the recent AC voltage supply to the streetlight and the SIM card code used for its cellular network communication?"',
'"What was the most recent threshold level set to stop recording flickering events using the SIM card code in the streetlight?"',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0041 |
cosine_accuracy@3 |
0.0207 |
cosine_accuracy@5 |
0.0415 |
cosine_accuracy@10 |
0.0622 |
cosine_precision@1 |
0.0041 |
cosine_precision@3 |
0.0069 |
cosine_precision@5 |
0.0083 |
cosine_precision@10 |
0.0062 |
cosine_recall@1 |
0.0041 |
cosine_recall@3 |
0.0207 |
cosine_recall@5 |
0.0415 |
cosine_recall@10 |
0.0622 |
cosine_ndcg@10 |
0.0288 |
cosine_mrr@10 |
0.0187 |
cosine_map@100 |
0.0243 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0041 |
cosine_accuracy@3 |
0.0207 |
cosine_accuracy@5 |
0.0415 |
cosine_accuracy@10 |
0.0622 |
cosine_precision@1 |
0.0041 |
cosine_precision@3 |
0.0069 |
cosine_precision@5 |
0.0083 |
cosine_precision@10 |
0.0062 |
cosine_recall@1 |
0.0041 |
cosine_recall@3 |
0.0207 |
cosine_recall@5 |
0.0415 |
cosine_recall@10 |
0.0622 |
cosine_ndcg@10 |
0.0288 |
cosine_mrr@10 |
0.0187 |
cosine_map@100 |
0.0243 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0083 |
cosine_accuracy@3 |
0.0207 |
cosine_accuracy@5 |
0.0415 |
cosine_accuracy@10 |
0.0581 |
cosine_precision@1 |
0.0083 |
cosine_precision@3 |
0.0069 |
cosine_precision@5 |
0.0083 |
cosine_precision@10 |
0.0058 |
cosine_recall@1 |
0.0083 |
cosine_recall@3 |
0.0207 |
cosine_recall@5 |
0.0415 |
cosine_recall@10 |
0.0581 |
cosine_ndcg@10 |
0.0292 |
cosine_mrr@10 |
0.0204 |
cosine_map@100 |
0.0262 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0083 |
cosine_accuracy@3 |
0.0207 |
cosine_accuracy@5 |
0.0373 |
cosine_accuracy@10 |
0.0539 |
cosine_precision@1 |
0.0083 |
cosine_precision@3 |
0.0069 |
cosine_precision@5 |
0.0075 |
cosine_precision@10 |
0.0054 |
cosine_recall@1 |
0.0083 |
cosine_recall@3 |
0.0207 |
cosine_recall@5 |
0.0373 |
cosine_recall@10 |
0.0539 |
cosine_ndcg@10 |
0.0274 |
cosine_mrr@10 |
0.0193 |
cosine_map@100 |
0.026 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0083 |
cosine_accuracy@3 |
0.0124 |
cosine_accuracy@5 |
0.029 |
cosine_accuracy@10 |
0.0539 |
cosine_precision@1 |
0.0083 |
cosine_precision@3 |
0.0041 |
cosine_precision@5 |
0.0058 |
cosine_precision@10 |
0.0054 |
cosine_recall@1 |
0.0083 |
cosine_recall@3 |
0.0124 |
cosine_recall@5 |
0.029 |
cosine_recall@10 |
0.0539 |
cosine_ndcg@10 |
0.0255 |
cosine_mrr@10 |
0.017 |
cosine_map@100 |
0.0226 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,161 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 6 tokens
- mean: 14.3 tokens
- max: 20 tokens
|
- min: 15 tokens
- mean: 32.58 tokens
- max: 54 tokens
|
- Samples:
positive |
anchor |
Lower lux level below which additional lighting may be necessary |
"What are the recent faults found in the lux module that affect light level control, in relation to the default dimming level of the streetlights and the control mode switch identifier used for changing settings?" |
Current dimming level of the streetlight in operation |
"Can the operator managing the streetlights provide the most recent update on the streetlight that is currently below the expected range and unable to connect to the network for remote management?" |
Upper voltage limit considered safe and efficient for streetlight operation |
"Can you provide any recent potential failures of a streetlight group due to unusually high voltage under load or intermittent flashing, within the southernmost geographic area?" |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
Unnamed Dataset
- Size: 241 evaluation samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 6 tokens
- mean: 14.31 tokens
- max: 20 tokens
|
- min: 17 tokens
- mean: 31.03 tokens
- max: 54 tokens
|
- Samples:
positive |
anchor |
Timestamp of the latest data recorded or action performed by the streetlight |
"What was the most recent threshold level set to stop recording flickering events using the SIM card code in the streetlight?" |
Maximum longitude of the geographic area covered by the group of streetlights |
"What is the recent power usage in watts for the oldest streetlight on the street with maximum longitude?" |
Current dimming level of the streetlight in operation |
"What is the most recent dimming level of the streetlight?" |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 1e-05
weight_decay
: 0.03
num_train_epochs
: 75
lr_scheduler_type
: cosine
warmup_ratio
: 0.2
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 1e-05
weight_decay
: 0.03
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 75
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.2
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch |
Step |
Training Loss |
loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.2353 |
1 |
11.247 |
- |
- |
- |
- |
- |
- |
0.4706 |
2 |
11.4455 |
- |
- |
- |
- |
- |
- |
0.7059 |
3 |
11.5154 |
- |
- |
- |
- |
- |
- |
0.9412 |
4 |
10.4079 |
- |
- |
- |
- |
- |
- |
1.1765 |
5 |
3.3256 |
- |
- |
- |
- |
- |
- |
1.4118 |
6 |
3.812 |
- |
- |
- |
- |
- |
- |
1.6471 |
7 |
4.0302 |
- |
- |
- |
- |
- |
- |
1.8824 |
8 |
3.5832 |
- |
- |
- |
- |
- |
- |
2.1176 |
9 |
3.9586 |
- |
- |
- |
- |
- |
- |
2.3529 |
10 |
4.2835 |
- |
- |
- |
- |
- |
- |
2.5882 |
11 |
1.6391 |
6.0237 |
0.0254 |
0.0354 |
0.0318 |
0.0230 |
0.0318 |
1.0294 |
12 |
1.3873 |
- |
- |
- |
- |
- |
- |
1.2647 |
13 |
11.1729 |
- |
- |
- |
- |
- |
- |
1.5 |
14 |
11.1729 |
- |
- |
- |
- |
- |
- |
1.7353 |
15 |
11.3334 |
- |
- |
- |
- |
- |
- |
1.9706 |
16 |
9.1337 |
- |
- |
- |
- |
- |
- |
2.2059 |
17 |
2.8674 |
- |
- |
- |
- |
- |
- |
2.4412 |
18 |
3.9162 |
- |
- |
- |
- |
- |
- |
2.6765 |
19 |
3.3378 |
- |
- |
- |
- |
- |
- |
2.9118 |
20 |
3.5152 |
- |
- |
- |
- |
- |
- |
3.1471 |
21 |
3.1655 |
- |
- |
- |
- |
- |
- |
3.3824 |
22 |
3.5905 |
- |
- |
- |
- |
- |
- |
3.6176 |
23 |
1.2027 |
5.5383 |
0.0265 |
0.0304 |
0.0291 |
0.0235 |
0.0291 |
2.0588 |
24 |
2.5902 |
- |
- |
- |
- |
- |
- |
2.2941 |
25 |
10.8776 |
- |
- |
- |
- |
- |
- |
2.5294 |
26 |
10.7109 |
- |
- |
- |
- |
- |
- |
2.7647 |
27 |
10.9662 |
- |
- |
- |
- |
- |
- |
3.0 |
28 |
7.5032 |
- |
- |
- |
- |
- |
- |
3.2353 |
29 |
1.9266 |
- |
- |
- |
- |
- |
- |
3.4706 |
30 |
2.5007 |
- |
- |
- |
- |
- |
- |
3.7059 |
31 |
2.2972 |
- |
- |
- |
- |
- |
- |
3.9412 |
32 |
2.3428 |
- |
- |
- |
- |
- |
- |
4.1765 |
33 |
2.4842 |
- |
- |
- |
- |
- |
- |
4.4118 |
34 |
2.371 |
- |
- |
- |
- |
- |
- |
4.6471 |
35 |
0.8811 |
5.0896 |
0.0261 |
0.0356 |
0.0324 |
0.0263 |
0.0324 |
3.0882 |
36 |
3.8163 |
- |
- |
- |
- |
- |
- |
3.3235 |
37 |
10.3601 |
- |
- |
- |
- |
- |
- |
3.5588 |
38 |
9.8085 |
- |
- |
- |
- |
- |
- |
3.7941 |
39 |
10.3201 |
- |
- |
- |
- |
- |
- |
4.0294 |
40 |
5.7213 |
- |
- |
- |
- |
- |
- |
4.2647 |
41 |
1.0641 |
- |
- |
- |
- |
- |
- |
4.5 |
42 |
1.7557 |
- |
- |
- |
- |
- |
- |
4.7353 |
43 |
1.534 |
- |
- |
- |
- |
- |
- |
4.9706 |
44 |
1.2931 |
- |
- |
- |
- |
- |
- |
5.2059 |
45 |
2.0569 |
- |
- |
- |
- |
- |
- |
5.4412 |
46 |
1.6945 |
- |
- |
- |
- |
- |
- |
5.6765 |
47 |
0.6985 |
4.8110 |
0.0267 |
0.0230 |
0.0343 |
0.0180 |
0.0343 |
4.1176 |
48 |
4.8862 |
- |
- |
- |
- |
- |
- |
4.3529 |
49 |
9.9427 |
- |
- |
- |
- |
- |
- |
4.5882 |
50 |
9.7492 |
- |
- |
- |
- |
- |
- |
4.8235 |
51 |
10.1616 |
- |
- |
- |
- |
- |
- |
5.0588 |
52 |
4.3073 |
- |
- |
- |
- |
- |
- |
5.2941 |
53 |
0.9089 |
- |
- |
- |
- |
- |
- |
5.5294 |
54 |
1.2689 |
- |
- |
- |
- |
- |
- |
5.7647 |
55 |
1.2875 |
- |
- |
- |
- |
- |
- |
6.0 |
56 |
1.2756 |
- |
- |
- |
- |
- |
- |
6.2353 |
57 |
1.6222 |
- |
- |
- |
- |
- |
- |
6.4706 |
58 |
1.3049 |
- |
- |
- |
- |
- |
- |
6.7059 |
59 |
0.3305 |
4.6562 |
0.0184 |
0.0327 |
0.0288 |
0.0190 |
0.0288 |
5.1471 |
60 |
5.7286 |
- |
- |
- |
- |
- |
- |
5.3824 |
61 |
9.7399 |
- |
- |
- |
- |
- |
- |
5.6176 |
62 |
9.3036 |
- |
- |
- |
- |
- |
- |
5.8529 |
63 |
9.6674 |
- |
- |
- |
- |
- |
- |
6.0882 |
64 |
2.7979 |
- |
- |
- |
- |
- |
- |
6.3235 |
65 |
0.4978 |
- |
- |
- |
- |
- |
- |
6.5588 |
66 |
1.8006 |
- |
- |
- |
- |
- |
- |
6.7941 |
67 |
1.098 |
- |
- |
- |
- |
- |
- |
7.0294 |
68 |
1.3678 |
- |
- |
- |
- |
- |
- |
7.2647 |
69 |
1.4648 |
- |
- |
- |
- |
- |
- |
7.5 |
70 |
1.1826 |
- |
- |
- |
- |
- |
- |
7.7353 |
71 |
0.0624 |
4.5802 |
0.0200 |
0.0208 |
0.0216 |
0.0231 |
0.0216 |
6.1765 |
72 |
6.8322 |
- |
- |
- |
- |
- |
- |
6.4118 |
73 |
9.3021 |
- |
- |
- |
- |
- |
- |
6.6471 |
74 |
9.1494 |
- |
- |
- |
- |
- |
- |
6.8824 |
75 |
9.631 |
- |
- |
- |
- |
- |
- |
7.1176 |
76 |
1.661 |
- |
- |
- |
- |
- |
- |
7.3529 |
77 |
0.2353 |
- |
- |
- |
- |
- |
- |
7.5882 |
78 |
1.0663 |
- |
- |
- |
- |
- |
- |
7.8235 |
79 |
0.6836 |
- |
- |
- |
- |
- |
- |
8.0588 |
80 |
0.9921 |
- |
- |
- |
- |
- |
- |
8.2941 |
81 |
1.6479 |
- |
- |
- |
- |
- |
- |
8.5294 |
82 |
0.6713 |
- |
- |
- |
- |
- |
- |
8.7647 |
83 |
0.0 |
4.5499 |
0.0209 |
0.0233 |
0.0249 |
0.0226 |
0.0249 |
7.2059 |
84 |
7.775 |
- |
- |
- |
- |
- |
- |
7.4412 |
85 |
9.0508 |
- |
- |
- |
- |
- |
- |
7.6765 |
86 |
9.1417 |
- |
- |
- |
- |
- |
- |
7.9118 |
87 |
8.9087 |
- |
- |
- |
- |
- |
- |
8.1471 |
88 |
0.9757 |
- |
- |
- |
- |
- |
- |
8.3824 |
89 |
0.7521 |
- |
- |
- |
- |
- |
- |
8.6176 |
90 |
0.7292 |
- |
- |
- |
- |
- |
- |
8.8529 |
91 |
0.6088 |
- |
- |
- |
- |
- |
- |
9.0882 |
92 |
0.9514 |
- |
- |
- |
- |
- |
- |
9.3235 |
93 |
1.435 |
- |
- |
- |
- |
- |
- |
9.5588 |
94 |
0.3655 |
- |
- |
- |
- |
- |
- |
9.7941 |
95 |
0.0 |
4.5162 |
0.0245 |
0.0268 |
0.0224 |
0.0238 |
0.0224 |
8.2353 |
96 |
8.7854 |
- |
- |
- |
- |
- |
- |
8.4706 |
97 |
9.0167 |
- |
- |
- |
- |
- |
- |
8.7059 |
98 |
9.0405 |
- |
- |
- |
- |
- |
- |
8.9412 |
99 |
7.7069 |
- |
- |
- |
- |
- |
- |
9.1765 |
100 |
0.6267 |
- |
- |
- |
- |
- |
- |
9.4118 |
101 |
0.4043 |
- |
- |
- |
- |
- |
- |
9.6471 |
102 |
0.7028 |
- |
- |
- |
- |
- |
- |
9.8824 |
103 |
0.751 |
- |
- |
- |
- |
- |
- |
10.1176 |
104 |
0.5994 |
- |
- |
- |
- |
- |
- |
10.3529 |
105 |
1.0402 |
- |
- |
- |
- |
- |
- |
10.5882 |
106 |
0.3983 |
4.4860 |
0.0259 |
0.0301 |
0.0252 |
0.0265 |
0.0252 |
9.0294 |
107 |
1.1037 |
- |
- |
- |
- |
- |
- |
9.2647 |
108 |
8.6263 |
- |
- |
- |
- |
- |
- |
9.5 |
109 |
8.9359 |
- |
- |
- |
- |
- |
- |
9.7353 |
110 |
8.9879 |
- |
- |
- |
- |
- |
- |
9.9706 |
111 |
6.4932 |
- |
- |
- |
- |
- |
- |
10.2059 |
112 |
0.3904 |
- |
- |
- |
- |
- |
- |
10.4412 |
113 |
0.3544 |
- |
- |
- |
- |
- |
- |
10.6765 |
114 |
0.5658 |
- |
- |
- |
- |
- |
- |
10.9118 |
115 |
0.5884 |
- |
- |
- |
- |
- |
- |
11.1471 |
116 |
0.4828 |
- |
- |
- |
- |
- |
- |
11.3824 |
117 |
0.8872 |
- |
- |
- |
- |
- |
- |
11.6176 |
118 |
0.2906 |
4.4899 |
0.0237 |
0.0267 |
0.0264 |
0.0242 |
0.0264 |
10.0588 |
119 |
2.1398 |
- |
- |
- |
- |
- |
- |
10.2941 |
120 |
8.6036 |
- |
- |
- |
- |
- |
- |
10.5294 |
121 |
8.7739 |
- |
- |
- |
- |
- |
- |
10.7647 |
122 |
9.1481 |
- |
- |
- |
- |
- |
- |
11.0 |
123 |
5.2436 |
- |
- |
- |
- |
- |
- |
11.2353 |
124 |
0.2435 |
- |
- |
- |
- |
- |
- |
11.4706 |
125 |
0.4451 |
- |
- |
- |
- |
- |
- |
11.7059 |
126 |
0.4338 |
- |
- |
- |
- |
- |
- |
11.9412 |
127 |
0.5156 |
- |
- |
- |
- |
- |
- |
12.1765 |
128 |
0.7081 |
- |
- |
- |
- |
- |
- |
12.4118 |
129 |
0.375 |
- |
- |
- |
- |
- |
- |
12.6471 |
130 |
0.1906 |
4.5243 |
0.0305 |
0.0253 |
0.0217 |
0.0214 |
0.0217 |
11.0882 |
131 |
3.115 |
- |
- |
- |
- |
- |
- |
11.3235 |
132 |
8.702 |
- |
- |
- |
- |
- |
- |
11.5588 |
133 |
8.4872 |
- |
- |
- |
- |
- |
- |
11.7941 |
134 |
9.0143 |
- |
- |
- |
- |
- |
- |
12.0294 |
135 |
4.2374 |
- |
- |
- |
- |
- |
- |
12.2647 |
136 |
0.1979 |
- |
- |
- |
- |
- |
- |
12.5 |
137 |
0.6371 |
- |
- |
- |
- |
- |
- |
12.7353 |
138 |
0.5763 |
- |
- |
- |
- |
- |
- |
12.9706 |
139 |
0.5716 |
- |
- |
- |
- |
- |
- |
13.2059 |
140 |
0.9894 |
- |
- |
- |
- |
- |
- |
13.4412 |
141 |
0.3963 |
- |
- |
- |
- |
- |
- |
13.6765 |
142 |
0.084 |
4.5514 |
0.0224 |
0.0253 |
0.0209 |
0.0250 |
0.0209 |
12.1176 |
143 |
4.1455 |
- |
- |
- |
- |
- |
- |
12.3529 |
144 |
8.6664 |
- |
- |
- |
- |
- |
- |
12.5882 |
145 |
8.5896 |
- |
- |
- |
- |
- |
- |
12.8235 |
146 |
8.9639 |
- |
- |
- |
- |
- |
- |
13.0588 |
147 |
3.2692 |
- |
- |
- |
- |
- |
- |
13.2941 |
148 |
0.2518 |
- |
- |
- |
- |
- |
- |
13.5294 |
149 |
0.8313 |
- |
- |
- |
- |
- |
- |
13.7647 |
150 |
0.5592 |
- |
- |
- |
- |
- |
- |
14.0 |
151 |
0.3966 |
- |
- |
- |
- |
- |
- |
14.2353 |
152 |
0.829 |
- |
- |
- |
- |
- |
- |
14.4706 |
153 |
0.2369 |
- |
- |
- |
- |
- |
- |
14.7059 |
154 |
0.0629 |
4.5549 |
0.0294 |
0.0312 |
0.0258 |
0.0315 |
0.0258 |
13.1471 |
155 |
5.1674 |
- |
- |
- |
- |
- |
- |
13.3824 |
156 |
8.5543 |
- |
- |
- |
- |
- |
- |
13.6176 |
157 |
8.4481 |
- |
- |
- |
- |
- |
- |
13.8529 |
158 |
8.7815 |
- |
- |
- |
- |
- |
- |
14.0882 |
159 |
1.9305 |
- |
- |
- |
- |
- |
- |
14.3235 |
160 |
0.0925 |
- |
- |
- |
- |
- |
- |
14.5588 |
161 |
0.6568 |
- |
- |
- |
- |
- |
- |
14.7941 |
162 |
0.2796 |
- |
- |
- |
- |
- |
- |
15.0294 |
163 |
0.5503 |
- |
- |
- |
- |
- |
- |
15.2647 |
164 |
0.6386 |
- |
- |
- |
- |
- |
- |
15.5 |
165 |
0.1957 |
- |
- |
- |
- |
- |
- |
15.7353 |
166 |
0.0137 |
4.5688 |
0.0210 |
0.0251 |
0.0251 |
0.0223 |
0.0251 |
14.1765 |
167 |
6.2283 |
- |
- |
- |
- |
- |
- |
14.4118 |
168 |
8.5378 |
- |
- |
- |
- |
- |
- |
14.6471 |
169 |
8.5173 |
- |
- |
- |
- |
- |
- |
14.8824 |
170 |
8.9953 |
- |
- |
- |
- |
- |
- |
15.1176 |
171 |
0.983 |
- |
- |
- |
- |
- |
- |
15.3529 |
172 |
0.1503 |
- |
- |
- |
- |
- |
- |
15.5882 |
173 |
0.9004 |
- |
- |
- |
- |
- |
- |
15.8235 |
174 |
0.3962 |
- |
- |
- |
- |
- |
- |
16.0588 |
175 |
0.4047 |
- |
- |
- |
- |
- |
- |
16.2941 |
176 |
0.8265 |
- |
- |
- |
- |
- |
- |
16.5294 |
177 |
0.3069 |
- |
- |
- |
- |
- |
- |
16.7647 |
178 |
0.0 |
4.5819 |
0.0219 |
0.0271 |
0.0240 |
0.0253 |
0.0240 |
15.2059 |
179 |
7.3186 |
- |
- |
- |
- |
- |
- |
15.4412 |
180 |
8.5984 |
- |
- |
- |
- |
- |
- |
15.6765 |
181 |
8.5362 |
- |
- |
- |
- |
- |
- |
15.9118 |
182 |
8.2934 |
- |
- |
- |
- |
- |
- |
16.1471 |
183 |
0.437 |
- |
- |
- |
- |
- |
- |
16.3824 |
184 |
0.1864 |
- |
- |
- |
- |
- |
- |
16.6176 |
185 |
0.2657 |
- |
- |
- |
- |
- |
- |
16.8529 |
186 |
0.4242 |
- |
- |
- |
- |
- |
- |
17.0882 |
187 |
0.4815 |
- |
- |
- |
- |
- |
- |
17.3235 |
188 |
0.5206 |
- |
- |
- |
- |
- |
- |
17.5588 |
189 |
0.1981 |
- |
- |
- |
- |
- |
- |
17.7941 |
190 |
0.0 |
4.5795 |
0.0249 |
0.0319 |
0.0287 |
0.0227 |
0.0287 |
16.2353 |
191 |
8.2837 |
- |
- |
- |
- |
- |
- |
16.4706 |
192 |
8.5457 |
- |
- |
- |
- |
- |
- |
16.7059 |
193 |
8.6284 |
- |
- |
- |
- |
- |
- |
16.9412 |
194 |
7.1806 |
- |
- |
- |
- |
- |
- |
17.1765 |
195 |
0.2714 |
- |
- |
- |
- |
- |
- |
17.4118 |
196 |
0.65 |
- |
- |
- |
- |
- |
- |
17.6471 |
197 |
0.3627 |
- |
- |
- |
- |
- |
- |
17.8824 |
198 |
0.2502 |
- |
- |
- |
- |
- |
- |
18.1176 |
199 |
0.4651 |
- |
- |
- |
- |
- |
- |
18.3529 |
200 |
0.3878 |
- |
- |
- |
- |
- |
- |
18.5882 |
201 |
0.1728 |
4.5870 |
0.0258 |
0.0321 |
0.0293 |
0.0290 |
0.0293 |
17.0294 |
202 |
1.0158 |
- |
- |
- |
- |
- |
- |
17.2647 |
203 |
8.1391 |
- |
- |
- |
- |
- |
- |
17.5 |
204 |
8.5323 |
- |
- |
- |
- |
- |
- |
17.7353 |
205 |
8.6644 |
- |
- |
- |
- |
- |
- |
17.9706 |
206 |
6.1161 |
- |
- |
- |
- |
- |
- |
18.2059 |
207 |
0.4636 |
- |
- |
- |
- |
- |
- |
18.4412 |
208 |
0.8765 |
- |
- |
- |
- |
- |
- |
18.6765 |
209 |
0.4075 |
- |
- |
- |
- |
- |
- |
18.9118 |
210 |
0.3211 |
- |
- |
- |
- |
- |
- |
19.1471 |
211 |
0.65 |
- |
- |
- |
- |
- |
- |
19.3824 |
212 |
0.4802 |
- |
- |
- |
- |
- |
- |
19.6176 |
213 |
0.0777 |
4.5921 |
0.0211 |
0.0268 |
0.0238 |
0.0260 |
0.0238 |
18.0588 |
214 |
1.9364 |
- |
- |
- |
- |
- |
- |
18.2941 |
215 |
8.3079 |
- |
- |
- |
- |
- |
- |
18.5294 |
216 |
8.4468 |
- |
- |
- |
- |
- |
- |
18.7647 |
217 |
8.8501 |
- |
- |
- |
- |
- |
- |
19.0 |
218 |
5.0076 |
- |
- |
- |
- |
- |
- |
19.2353 |
219 |
0.1596 |
- |
- |
- |
- |
- |
- |
19.4706 |
220 |
0.6482 |
- |
- |
- |
- |
- |
- |
19.7059 |
221 |
0.5019 |
- |
- |
- |
- |
- |
- |
19.9412 |
222 |
0.2596 |
- |
- |
- |
- |
- |
- |
20.1765 |
223 |
0.5857 |
- |
- |
- |
- |
- |
- |
20.4118 |
224 |
0.3469 |
- |
- |
- |
- |
- |
- |
20.6471 |
225 |
0.082 |
4.5951 |
0.0251 |
0.0293 |
0.0239 |
0.0259 |
0.0239 |
19.0882 |
226 |
3.0141 |
- |
- |
- |
- |
- |
- |
19.3235 |
227 |
8.3977 |
- |
- |
- |
- |
- |
- |
19.5588 |
228 |
8.2687 |
- |
- |
- |
- |
- |
- |
19.7941 |
229 |
8.8415 |
- |
- |
- |
- |
- |
- |
20.0294 |
230 |
3.9692 |
- |
- |
- |
- |
- |
- |
20.2647 |
231 |
0.2079 |
- |
- |
- |
- |
- |
- |
20.5 |
232 |
0.6167 |
- |
- |
- |
- |
- |
- |
20.7353 |
233 |
0.255 |
- |
- |
- |
- |
- |
- |
20.9706 |
234 |
0.2403 |
- |
- |
- |
- |
- |
- |
21.2059 |
235 |
0.5944 |
- |
- |
- |
- |
- |
- |
21.4412 |
236 |
0.4212 |
- |
- |
- |
- |
- |
- |
21.6765 |
237 |
0.1031 |
4.5929 |
0.0248 |
0.0301 |
0.0297 |
0.0268 |
0.0297 |
20.1176 |
238 |
4.0698 |
- |
- |
- |
- |
- |
- |
20.3529 |
239 |
8.3696 |
- |
- |
- |
- |
- |
- |
20.5882 |
240 |
8.2668 |
- |
- |
- |
- |
- |
- |
20.8235 |
241 |
8.8194 |
- |
- |
- |
- |
- |
- |
21.0588 |
242 |
2.9283 |
- |
- |
- |
- |
- |
- |
21.2941 |
243 |
0.0974 |
- |
- |
- |
- |
- |
- |
21.5294 |
244 |
0.5172 |
- |
- |
- |
- |
- |
- |
21.7647 |
245 |
0.2451 |
- |
- |
- |
- |
- |
- |
22.0 |
246 |
0.4693 |
- |
- |
- |
- |
- |
- |
22.2353 |
247 |
0.7352 |
- |
- |
- |
- |
- |
- |
22.4706 |
248 |
0.1933 |
- |
- |
- |
- |
- |
- |
22.7059 |
249 |
0.0552 |
4.5945 |
0.0261 |
0.0275 |
0.0279 |
0.0204 |
0.0279 |
21.1471 |
250 |
5.1237 |
- |
- |
- |
- |
- |
- |
21.3824 |
251 |
8.5068 |
- |
- |
- |
- |
- |
- |
21.6176 |
252 |
8.2828 |
- |
- |
- |
- |
- |
- |
21.8529 |
253 |
8.7851 |
- |
- |
- |
- |
- |
- |
22.0882 |
254 |
2.0883 |
- |
- |
- |
- |
- |
- |
22.3235 |
255 |
0.1147 |
- |
- |
- |
- |
- |
- |
22.5588 |
256 |
0.5259 |
- |
- |
- |
- |
- |
- |
22.7941 |
257 |
0.2915 |
- |
- |
- |
- |
- |
- |
23.0294 |
258 |
0.2495 |
- |
- |
- |
- |
- |
- |
23.2647 |
259 |
0.7518 |
- |
- |
- |
- |
- |
- |
23.5 |
260 |
0.1767 |
- |
- |
- |
- |
- |
- |
23.7353 |
261 |
0.0244 |
4.5944 |
0.0213 |
0.0267 |
0.0265 |
0.0220 |
0.0265 |
22.1765 |
262 |
6.1144 |
- |
- |
- |
- |
- |
- |
22.4118 |
263 |
8.3334 |
- |
- |
- |
- |
- |
- |
22.6471 |
264 |
8.4377 |
- |
- |
- |
- |
- |
- |
22.8824 |
265 |
8.8182 |
- |
- |
- |
- |
- |
- |
23.1176 |
266 |
0.8795 |
- |
- |
- |
- |
- |
- |
23.3529 |
267 |
0.0637 |
- |
- |
- |
- |
- |
- |
23.5882 |
268 |
0.3658 |
- |
- |
- |
- |
- |
- |
23.8235 |
269 |
0.3599 |
- |
- |
- |
- |
- |
- |
24.0588 |
270 |
0.283 |
- |
- |
- |
- |
- |
- |
24.2941 |
271 |
0.731 |
- |
- |
- |
- |
- |
- |
24.5294 |
272 |
0.1758 |
- |
- |
- |
- |
- |
- |
24.7647 |
273 |
0.0 |
4.5963 |
0.0259 |
0.0295 |
0.0247 |
0.0229 |
0.0247 |
23.2059 |
274 |
7.1188 |
- |
- |
- |
- |
- |
- |
23.4412 |
275 |
8.354 |
- |
- |
- |
- |
- |
- |
23.6765 |
276 |
8.5186 |
- |
- |
- |
- |
- |
- |
23.9118 |
277 |
8.1633 |
- |
- |
- |
- |
- |
- |
24.1471 |
278 |
0.3481 |
- |
- |
- |
- |
- |
- |
24.3824 |
279 |
0.574 |
- |
- |
- |
- |
- |
- |
24.6176 |
280 |
0.2784 |
- |
- |
- |
- |
- |
- |
24.8529 |
281 |
0.251 |
- |
- |
- |
- |
- |
- |
25.0882 |
282 |
0.4093 |
- |
- |
- |
- |
- |
- |
25.3235 |
283 |
0.5414 |
- |
- |
- |
- |
- |
- |
25.5588 |
284 |
0.149 |
- |
- |
- |
- |
- |
- |
25.7941 |
285 |
0.0 |
4.5965 |
0.0223 |
0.0251 |
0.0240 |
0.0204 |
0.0240 |
24.2353 |
286 |
8.2498 |
- |
- |
- |
- |
- |
- |
24.4706 |
287 |
8.4555 |
- |
- |
- |
- |
- |
- |
24.7059 |
288 |
8.5368 |
- |
- |
- |
- |
- |
- |
24.9412 |
289 |
7.1779 |
- |
- |
- |
- |
- |
- |
25.1765 |
290 |
0.1486 |
- |
- |
- |
- |
- |
- |
25.4118 |
291 |
0.9156 |
- |
- |
- |
- |
- |
- |
25.6471 |
292 |
0.2757 |
- |
- |
- |
- |
- |
- |
25.8824 |
293 |
0.237 |
- |
- |
- |
- |
- |
- |
26.1176 |
294 |
0.2979 |
- |
- |
- |
- |
- |
- |
26.3529 |
295 |
0.5296 |
- |
- |
- |
- |
- |
- |
26.5882 |
296 |
0.2062 |
4.5949 |
0.0259 |
0.0327 |
0.0308 |
0.0247 |
0.0308 |
25.0294 |
297 |
1.0355 |
- |
- |
- |
- |
- |
- |
25.2647 |
298 |
8.1721 |
- |
- |
- |
- |
- |
- |
25.5 |
299 |
8.4028 |
- |
- |
- |
- |
- |
- |
25.7353 |
300 |
8.5989 |
4.5941 |
0.0260 |
0.0262 |
0.0243 |
0.0226 |
0.0243 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}