ta264's picture
update model card README.md
86c3322
|
raw
history blame
2.19 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - movie_releases
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-radarr
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: movie_releases
          type: movie_releases
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.9555421444377389
          - name: Recall
            type: recall
            value: 0.9638798701298701
          - name: F1
            type: f1
            value: 0.9596928982725529
          - name: Accuracy
            type: accuracy
            value: 0.9817602584524263

bert-finetuned-radarr

This model is a fine-tuned version of distilbert-base-uncased on the movie_releases dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0731
  • Precision: 0.9555
  • Recall: 0.9639
  • F1: 0.9597
  • Accuracy: 0.9818

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0431 1.0 1191 0.1403 0.9436 0.9574 0.9504 0.9626
0.0236 2.0 2382 0.0881 0.9485 0.9560 0.9522 0.9694
0.0138 3.0 3573 0.0731 0.9555 0.9639 0.9597 0.9818

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1