Shakhovak's picture
End of training
a9e10b4 verified
metadata
base_model: cointegrated/rubert-tiny2
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:13690
  - loss:ContrastiveLoss
widget:
  - source_sentence: >-
      Грузоблочный тренажер Bronze Gym D-015 - жим ногами в Москве Силовые
      тренажеры Грузоблочные Bronze Gym D-015 - жим ногами
    sentences:
      - >-
        Трицепс-машина Matrix G3-S45 Главная Силовые тренажеры Трицепс-машина
        Matrix G3-S45
      - >-
        Верхняя тяга Iron Bull IR-TE08 nan Силовые тренажеры Грузоблочные
        тренажеры
      - >-
        Горизонтальный велоэргометр Matrix Lifestyle с консолью LED nan
        Велотренажеры Matrix
  - source_sentence: Эллиптический тренажер Precor EFX 731 nan Эллиптические тренажеры Precor
    sentences:
      - >-
        Беговая дорожка коммерческая AeroFit X3-T 10″LCD в Москве
        Кардиотренажеры Беговые дорожки AeroFit X3-T 10″LCD
      - >-
        Машина Смита Matrix G1-FW161 Главная Силовые тренажеры Машина Смита
        Matrix G1-FW161
      - >-
        Эллиптический тренажер CardioPower X75 Главная Эллиптические тренажеры
        Бренды
  - source_sentence: Велотренажер Clear Fit Envy CFB 45 Ego Главная Велотренажеры Бренды
    sentences:
      - >-
        Велотренажер Spirit Fitness MU100 реабилитационный в Москве
        Кардиотренажеры Велотренажеры Spirit Fitness MU100 реабилитационный
      - >-
        Многофункциональная блочная станция Teca SP785C Две Гребных тяги nan
        Силовые тренажеры Мультистанции
      - Беговая дорожка Sports Art T670 Главная Беговые дорожки Бренды
  - source_sentence: Горизонтальный велотренажер TRUE C400 Главная Велотренажеры Бренды
    sentences:
      - Велотренажер UltraGym UG-B002 nan Велотренажеры UltraGym
      - >-
        Грузоблочный тренажер Precor DSL505 - задние дельты/баттерфляй в Москве
        Силовые тренажеры Грузоблочные Precor DSL505 - задние дельты/баттерфляй
      - >-
        Беговая дорожка Hasttings LCT80 Беговые дорожки Hasttings Hasttings
        LCT80
  - source_sentence: >-
      Беговая дорожка Hasttings CT100 Главная Беговые дорожки Беговая дорожка
      Hasttings CT100
    sentences:
      - >-
        Вертикальная тяга RangeMax CST-018 nan Силовые тренажеры Грузоблочные
        тренажеры
      - Беговая дорожка ProForm 910 Беговые дорожки ProForm ProForm 910
      - Беговая дорожка AMMITY SPACE ATM 5000 Главная Беговые дорожки Бренды
model-index:
  - name: SentenceTransformer based on cointegrated/rubert-tiny2
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: cv
          type: cv
        metrics:
          - type: cosine_accuracy
            value: 1
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.7240798473358154
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 1
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.7240798473358154
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 1
            name: Cosine Precision
          - type: cosine_recall
            value: 1
            name: Cosine Recall
          - type: cosine_ap
            value: 1
            name: Cosine Ap
          - type: dot_accuracy
            value: 1
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 0.7240797877311707
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 1
            name: Dot F1
          - type: dot_f1_threshold
            value: 0.7240797877311707
            name: Dot F1 Threshold
          - type: dot_precision
            value: 1
            name: Dot Precision
          - type: dot_recall
            value: 1
            name: Dot Recall
          - type: dot_ap
            value: 1
            name: Dot Ap
          - type: manhattan_accuracy
            value: 1
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 9.055404663085938
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 1
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 9.055404663085938
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 1
            name: Manhattan Precision
          - type: manhattan_recall
            value: 1
            name: Manhattan Recall
          - type: manhattan_ap
            value: 1
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 1
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 0.6519391536712646
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 1
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 0.6519391536712646
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 1
            name: Euclidean Precision
          - type: euclidean_recall
            value: 1
            name: Euclidean Recall
          - type: euclidean_ap
            value: 1
            name: Euclidean Ap
          - type: max_accuracy
            value: 1
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 9.055404663085938
            name: Max Accuracy Threshold
          - type: max_f1
            value: 1
            name: Max F1
          - type: max_f1_threshold
            value: 9.055404663085938
            name: Max F1 Threshold
          - type: max_precision
            value: 1
            name: Max Precision
          - type: max_recall
            value: 1
            name: Max Recall
          - type: max_ap
            value: 1
            name: Max Ap

SentenceTransformer based on cointegrated/rubert-tiny2

This is a sentence-transformers model finetuned from cointegrated/rubert-tiny2. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: cointegrated/rubert-tiny2
  • Maximum Sequence Length: 2048 tokens
  • Output Dimensionality: 312 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Беговая дорожка Hasttings CT100 Главная Беговые дорожки Беговая дорожка Hasttings CT100',
    'Беговая дорожка AMMITY SPACE ATM 5000 Главная Беговые дорожки Бренды',
    'Беговая дорожка ProForm 910 Беговые дорожки ProForm ProForm 910',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 1.0
cosine_accuracy_threshold 0.7241
cosine_f1 1.0
cosine_f1_threshold 0.7241
cosine_precision 1.0
cosine_recall 1.0
cosine_ap 1.0
dot_accuracy 1.0
dot_accuracy_threshold 0.7241
dot_f1 1.0
dot_f1_threshold 0.7241
dot_precision 1.0
dot_recall 1.0
dot_ap 1.0
manhattan_accuracy 1.0
manhattan_accuracy_threshold 9.0554
manhattan_f1 1.0
manhattan_f1_threshold 9.0554
manhattan_precision 1.0
manhattan_recall 1.0
manhattan_ap 1.0
euclidean_accuracy 1.0
euclidean_accuracy_threshold 0.6519
euclidean_f1 1.0
euclidean_f1_threshold 0.6519
euclidean_precision 1.0
euclidean_recall 1.0
euclidean_ap 1.0
max_accuracy 1.0
max_accuracy_threshold 9.0554
max_f1 1.0
max_f1_threshold 9.0554
max_precision 1.0
max_recall 1.0
max_ap 1.0

Training Details

Training Dataset

Unnamed Dataset

  • Size: 13,690 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 14 tokens
    • mean: 29.13 tokens
    • max: 66 tokens
    • min: 13 tokens
    • mean: 29.18 tokens
    • max: 63 tokens
    • min: 0.0
    • mean: 0.51
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Велотренажер аэродинамический Spirit Fitness AB900+ Air Bike в Москве Кардиотренажеры Велотренажеры Spirit Fitness AB900+ Air Bike Велотренажер IZHIMIO СL 1500 Главная Велотренажеры Бренды 1.0
    Эллиптический тренажер Sports Art E835 Главная Эллиптические тренажеры Бренды Степпер Matrix C7XI в Москве Кардиотренажеры Степперы Matrix C7XI 0.0
    Мультистанция Nohrd SlimBeam nan Силовые тренажеры Мультистанции Эллиптический тренажер Koenigsmann JX-170EF в Москве Кардиотренажеры Эллиптические тренажеры Koenigsmann JX-170EF 0.0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 28 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 28 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 15 tokens
    • mean: 27.18 tokens
    • max: 45 tokens
    • min: 16 tokens
    • mean: 28.0 tokens
    • max: 47 tokens
    • min: 0.0
    • mean: 0.61
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Беговая дорожка Carbon Yukon Беговые дорожки Carbon Carbon Yukon Беговая дорожка Hasttings LCT80 Беговые дорожки Hasttings Hasttings LCT80 1.0
    Беговая дорожка Беговая дорожка DFC BOSS I T-B1 для реабилитации Беговые дорожки DFC Беговая дорожка DFC BOSS I T-B1 для реабилитации Беговая дорожка EVO FITNESS Cosmo 5 Главная Беговые дорожки Бренды 1.0
    Грузоблочный тренажер Precor C010ES - жим ногами/икроножные в Москве Силовые тренажеры Грузоблочные Precor C010ES - жим ногами/икроножные Кроссовер Bronze Gym D-005 Главная Силовые тренажеры Кроссовер Bronze Gym D-005 1.0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 10
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss cv_max_ap
0 0 - - 0.7655
1.0 428 - 0.0056 1.0
1.1682 500 0.0078 - -
2.0 856 - 0.0015 1.0
2.3364 1000 0.0019 - -
3.0 1284 - 0.0011 1.0
3.5047 1500 0.0013 - -
4.0 1712 - 0.0007 1.0
4.6729 2000 0.001 - -
5.0 2140 - 0.0004 1.0
5.8411 2500 0.0008 - -
6.0 2568 - 0.0002 1.0
7.0 2996 - 0.0002 1.0
7.0093 3000 0.0007 - -
8.0 3424 - 0.0001 1.0
8.1776 3500 0.0006 - -
9.0 3852 - 0.0001 1.0
9.3458 4000 0.0005 - -
10.0 4280 - 0.0001 1.0

Framework Versions

  • Python: 3.11.8
  • Sentence Transformers: 3.1.0
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu118
  • Accelerate: 0.34.2
  • Datasets: 3.0.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}