|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: distilbert-base-uncased-finetuned-squad |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-uncased-finetuned-squad |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 5.0244 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 60 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| No log | 1.0 | 30 | 3.5643 | |
|
| No log | 2.0 | 60 | 2.4546 | |
|
| No log | 3.0 | 90 | 2.3018 | |
|
| No log | 4.0 | 120 | 2.4636 | |
|
| No log | 5.0 | 150 | 2.4736 | |
|
| No log | 6.0 | 180 | 2.5580 | |
|
| No log | 7.0 | 210 | 2.6686 | |
|
| No log | 8.0 | 240 | 2.7249 | |
|
| No log | 9.0 | 270 | 3.2596 | |
|
| No log | 10.0 | 300 | 3.5904 | |
|
| No log | 11.0 | 330 | 3.6709 | |
|
| No log | 12.0 | 360 | 3.6431 | |
|
| No log | 13.0 | 390 | 3.6343 | |
|
| No log | 14.0 | 420 | 3.8316 | |
|
| No log | 15.0 | 450 | 3.6363 | |
|
| No log | 16.0 | 480 | 3.8468 | |
|
| 0.8931 | 17.0 | 510 | 3.7114 | |
|
| 0.8931 | 18.0 | 540 | 3.8719 | |
|
| 0.8931 | 19.0 | 570 | 4.0872 | |
|
| 0.8931 | 20.0 | 600 | 4.2989 | |
|
| 0.8931 | 21.0 | 630 | 4.5494 | |
|
| 0.8931 | 22.0 | 660 | 4.2565 | |
|
| 0.8931 | 23.0 | 690 | 4.3009 | |
|
| 0.8931 | 24.0 | 720 | 4.1816 | |
|
| 0.8931 | 25.0 | 750 | 4.2583 | |
|
| 0.8931 | 26.0 | 780 | 4.2276 | |
|
| 0.8931 | 27.0 | 810 | 4.3481 | |
|
| 0.8931 | 28.0 | 840 | 4.4369 | |
|
| 0.8931 | 29.0 | 870 | 4.4891 | |
|
| 0.8931 | 30.0 | 900 | 4.5521 | |
|
| 0.8931 | 31.0 | 930 | 4.5201 | |
|
| 0.8931 | 32.0 | 960 | 4.6323 | |
|
| 0.8931 | 33.0 | 990 | 4.4766 | |
|
| 0.0297 | 34.0 | 1020 | 4.7612 | |
|
| 0.0297 | 35.0 | 1050 | 4.9057 | |
|
| 0.0297 | 36.0 | 1080 | 4.7580 | |
|
| 0.0297 | 37.0 | 1110 | 4.6351 | |
|
| 0.0297 | 38.0 | 1140 | 4.6495 | |
|
| 0.0297 | 39.0 | 1170 | 4.5980 | |
|
| 0.0297 | 40.0 | 1200 | 4.6370 | |
|
| 0.0297 | 41.0 | 1230 | 4.6523 | |
|
| 0.0297 | 42.0 | 1260 | 4.5802 | |
|
| 0.0297 | 43.0 | 1290 | 4.6304 | |
|
| 0.0297 | 44.0 | 1320 | 4.7111 | |
|
| 0.0297 | 45.0 | 1350 | 4.7219 | |
|
| 0.0297 | 46.0 | 1380 | 4.7323 | |
|
| 0.0297 | 47.0 | 1410 | 4.9115 | |
|
| 0.0297 | 48.0 | 1440 | 4.7873 | |
|
| 0.0297 | 49.0 | 1470 | 4.9340 | |
|
| 0.0023 | 50.0 | 1500 | 5.0638 | |
|
| 0.0023 | 51.0 | 1530 | 5.0750 | |
|
| 0.0023 | 52.0 | 1560 | 4.9338 | |
|
| 0.0023 | 53.0 | 1590 | 4.9197 | |
|
| 0.0023 | 54.0 | 1620 | 4.9282 | |
|
| 0.0023 | 55.0 | 1650 | 5.0038 | |
|
| 0.0023 | 56.0 | 1680 | 4.9848 | |
|
| 0.0023 | 57.0 | 1710 | 4.9932 | |
|
| 0.0023 | 58.0 | 1740 | 5.0134 | |
|
| 0.0023 | 59.0 | 1770 | 5.0303 | |
|
| 0.0023 | 60.0 | 1800 | 5.0244 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.12.0+cu113 |
|
- Tokenizers 0.12.1 |
|
|