whisper-medium-hi / README.md
Singhamarjeet8130's picture
End of training
7ca7d2d verified
metadata
library_name: transformers
language:
  - hi
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Medium Hi - Amarjeet
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 13.0
          type: mozilla-foundation/common_voice_13_0
          config: hi
          split: None
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 23.48751501097354

Whisper Medium Hi - Amarjeet

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3223
  • Wer: 23.4875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0546 2.3641 1000 0.2291 26.3406
0.0124 4.7281 2000 0.2662 24.4275
0.0007 7.0922 3000 0.3053 23.8147
0.0001 9.4563 4000 0.3223 23.4875

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.21.0