File size: 4,796 Bytes
51181fa 33f0ac7 51181fa 73596f8 33f0ac7 51181fa 33f0ac7 51181fa 33f0ac7 51181fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: resnet-50-bottomCleanedData
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9761634506242906
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# resnet-50-bottomCleanedData
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0822
- Accuracy: 0.9762
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 7
- total_train_batch_size: 56
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3323 | 1.0 | 141 | 1.3319 | 0.5187 |
| 1.1302 | 2.0 | 283 | 1.1059 | 0.5335 |
| 0.8793 | 2.99 | 424 | 0.7848 | 0.7094 |
| 0.7652 | 4.0 | 566 | 0.7255 | 0.7219 |
| 0.7708 | 4.99 | 707 | 0.5280 | 0.8173 |
| 0.6153 | 6.0 | 849 | 0.4221 | 0.8490 |
| 0.5895 | 7.0 | 991 | 0.4015 | 0.8570 |
| 0.5617 | 8.0 | 1132 | 0.2998 | 0.9001 |
| 0.517 | 9.0 | 1274 | 0.2737 | 0.9160 |
| 0.5366 | 9.99 | 1415 | 0.2229 | 0.9240 |
| 0.4645 | 11.0 | 1557 | 0.2038 | 0.9330 |
| 0.4114 | 11.99 | 1698 | 0.1851 | 0.9376 |
| 0.4528 | 13.0 | 1840 | 0.1796 | 0.9432 |
| 0.4182 | 14.0 | 1982 | 0.1578 | 0.9523 |
| 0.432 | 15.0 | 2123 | 0.1660 | 0.9421 |
| 0.4442 | 16.0 | 2265 | 0.1401 | 0.9557 |
| 0.4059 | 16.99 | 2406 | 0.1332 | 0.9591 |
| 0.3498 | 18.0 | 2548 | 0.1431 | 0.9535 |
| 0.3869 | 18.99 | 2689 | 0.1237 | 0.9512 |
| 0.3639 | 20.0 | 2831 | 0.1193 | 0.9603 |
| 0.3819 | 21.0 | 2973 | 0.1234 | 0.9557 |
| 0.3491 | 22.0 | 3114 | 0.1207 | 0.9569 |
| 0.3259 | 23.0 | 3256 | 0.1234 | 0.9591 |
| 0.3199 | 23.99 | 3397 | 0.1028 | 0.9659 |
| 0.3398 | 25.0 | 3539 | 0.1010 | 0.9603 |
| 0.3108 | 25.99 | 3680 | 0.1015 | 0.9671 |
| 0.3417 | 27.0 | 3822 | 0.1080 | 0.9614 |
| 0.3835 | 28.0 | 3964 | 0.1056 | 0.9591 |
| 0.3336 | 29.0 | 4105 | 0.1011 | 0.9637 |
| 0.3035 | 30.0 | 4247 | 0.0972 | 0.9614 |
| 0.2559 | 30.99 | 4388 | 0.0941 | 0.9659 |
| 0.378 | 32.0 | 4530 | 0.0963 | 0.9603 |
| 0.2932 | 32.99 | 4671 | 0.0916 | 0.9716 |
| 0.3072 | 34.0 | 4813 | 0.0917 | 0.9671 |
| 0.3081 | 35.0 | 4955 | 0.1025 | 0.9625 |
| 0.2724 | 36.0 | 5096 | 0.0874 | 0.9671 |
| 0.2621 | 37.0 | 5238 | 0.0847 | 0.9705 |
| 0.3521 | 37.99 | 5379 | 0.0829 | 0.9728 |
| 0.2883 | 39.0 | 5521 | 0.0860 | 0.9728 |
| 0.2617 | 39.99 | 5662 | 0.0898 | 0.9682 |
| 0.2893 | 41.0 | 5804 | 0.0877 | 0.9671 |
| 0.2994 | 42.0 | 5946 | 0.0822 | 0.9762 |
| 0.2483 | 43.0 | 6087 | 0.0834 | 0.9705 |
| 0.301 | 44.0 | 6229 | 0.0883 | 0.9694 |
| 0.2648 | 44.99 | 6370 | 0.0834 | 0.9705 |
| 0.2902 | 46.0 | 6512 | 0.0879 | 0.9648 |
| 0.299 | 46.99 | 6653 | 0.0843 | 0.9694 |
| 0.2726 | 48.0 | 6795 | 0.0920 | 0.9659 |
| 0.3252 | 49.0 | 6937 | 0.0857 | 0.9716 |
| 0.274 | 49.8 | 7050 | 0.0813 | 0.9762 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|