VerB-Etheria-55b / README.md
Steelskull's picture
Adding Evaluation Results (#1)
afe8f1c verified
metadata
license: apache-2.0
tags:
  - mergekit
  - merge
  - Etheria
base_model:
  - brucethemoose/Yi-34B-200K-DARE-megamerge-v8
  - one-man-army/UNA-34Beagles-32K-bf16-v1
model-index:
  - name: VerB-Etheria-55b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 65.96
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/VerB-Etheria-55b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 81.48
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/VerB-Etheria-55b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 73.78
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/VerB-Etheria-55b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 57.52
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/VerB-Etheria-55b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 75.45
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/VerB-Etheria-55b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 28.81
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/VerB-Etheria-55b
          name: Open LLM Leaderboard

VerB-Etheria-55b

image/png

An attempt to make a functional goliath style merge to create a [Etheria] 55b-200k with two yi-34b-200k models, this is Version B or VerB, it is a Double Model Passthrough merge. with a 50/50 split between high performing models.

Roadmap:

Depending on quality, I Might private the other Version. Then generate a sacrificial 55b and perform a 55b Dare ties merge or Slerp merge.

1: If the Dual Model Merge performs well I will make a direct inverse of the config then merge.

2: If the single model performs well I will generate a 55b of the most performant model the either Slerp or Dare ties merge.

3: If both models perform well, then I will complete both 1 & 2 then change the naming scheme to match each of the new models.

Configuration

The following YAML configuration was used to produce this model:


dtype: bfloat16
slices:
- sources:
    - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8
      layer_range: [0, 14]
- sources:
    - model: one-man-army/UNA-34Beagles-32K-bf16-v1
      layer_range: [7, 21]
- sources:
    - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8
      layer_range: [15, 29]
- sources:
    - model: one-man-army/UNA-34Beagles-32K-bf16-v1
      layer_range: [22, 36]
- sources:
    - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8
      layer_range: [30, 44]
- sources:
    - model: one-man-army/UNA-34Beagles-32K-bf16-v1
      layer_range: [37, 51]
- sources:
    - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8
      layer_range: [45, 59]
merge_method: passthrough

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 63.83
AI2 Reasoning Challenge (25-Shot) 65.96
HellaSwag (10-Shot) 81.48
MMLU (5-Shot) 73.78
TruthfulQA (0-shot) 57.52
Winogrande (5-shot) 75.45
GSM8k (5-shot) 28.81