license: other
inference: false
OpenAssistant LLaMA 30B SFT 7 GPTQ
This in a repo of GPTQ format 4bit quantised models for OpenAssistant's LLaMA 30B SFT 7.
It is the result of merging the XORs from the above repo with the original Llama 30B weights, and then quantising to 4bit GPU inference using GPTQ-for-LLaMa.
This is epoch 7 of OpenAssistant's training of their Llama 30B model.
Please note that these models will need 24GB VRAM or greater to use effectively
Repositories available
- 4bit GPTQ models for GPU inference.
- 4bit and 5bit GGML models for CPU inference.
- Unquantised 16bit model in HF format.
PROMPT TEMPLATE
This model requires the following prompt template:
<|prompter|> prompt goes here
<|assistant|>:
CHOICE OF MODELS
Two sets of models are provided:
- Groupsize = 1024
- Should work reliably in 24GB VRAM
- Groupsize = 128
- Optimal setting for highest inference quality
- But may require more than 24GB VRAM, depending on response length
- In my testing it ran out of VRAM on a 24GB card around 1500 tokens returned.
For each model, two versions are available:
compat.no-act-order.safetensor
- Works with all versions of GPTQ-for-LLaMa, including the version in text-generation-webui one-click-installers
latest.act-order.safetensors
- uses
--act-order
for higher inference quality - requires more recent GPTQ-for-LLaMa code, therefore will not currently work with one-click-installers
- uses
HOW TO CHOOSE YOUR MODEL
I have used branches to separate the models:
- Branch: main = groupsize 1024,
compat.no-act-order.safetensor
file - Branch: 1024-latest = groupsize 1024,
latest.no-act-order.safetensor
file - Branch: 128-compat = groupsize 128,
compat.no-act-order.safetensor
file - Branch: 128-latest = groupsize 128,
latest.no-act-order.safetensor
file
How to easily download and run the 1024g compat model in text-generation-webui
Load text-generation-webui as you normally do.
- Click the Model tab.
- Under Download custom model or LoRA, enter this repo name:
TheBloke/stable-vicuna-13B-GPTQ
. - Click Download.
- Wait until it says it's finished downloading.
- As this is a GPTQ model, fill in the
GPTQ parameters
on the right:Bits = 4
,Groupsize = 128
,model_type = Llama
- Now click the Refresh icon next to Model in the top left.
- In the Model drop-down: choose this model:
stable-vicuna-13B-GPTQ
. - Click Reload the Model in the top right.
- Once it says it's loaded, click the Text Generation tab and enter a prompt!
Manual instructions for text-generation-webui
The compat.no-act-order.safetensors
files can be loaded the same as any other GPTQ file, without requiring any updates to oobaboogas text-generation-webui.
Instructions on using GPTQ 4bit files in text-generation-webui are here.
The latest.act-order.safetensors
files were created using --act-order
to give the maximum possible quantisation quality, but this means it requires that the latest GPTQ-for-LLaMa is used inside the UI.
If you want to use the act-order safetensors
files and need to update the Triton branch of GPTQ-for-LLaMa, here are the commands I used to clone the Triton branch of GPTQ-for-LLaMa, clone text-generation-webui, and install GPTQ into the UI:
# Clone text-generation-webui, if you don't already have it
git clone https://github.com/oobabooga/text-generation-webui
# Make a repositories directory
mkdir text-generation-webui/repositories
cd text-generation-webui/repositories
# Clone the latest GPTQ-for-LLaMa code inside text-generation-webui
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa
Then install this model into text-generation-webui/models
and launch the UI as follows:
cd text-generation-webui
python server.py --model OpenAssistant-SFT-7-Llama-30B-GPTQ --wbits 4 --groupsize 128 --model_type Llama # add any other command line args you want
To update the CUDA branch of GPTQ-for-LLaMa, you can do the following. This requires a C/C++ compiler and the CUDA toolkit installed!
# Clone text-generation-webui, if you don't already have it
git clone https://github.com/oobabooga/text-generation-webui
# Make a repositories directory
mkdir text-generation-webui/repositories
cd text-generation-webui/repositories
# Clone the latest GPTQ-for-LLaMa code inside text-generation-webui
git clone -b cuda https://github.com/qwopqwop200/GPTQ-for-LLaMa
cd GPTQ-for-LLaMa
pip uninstall quant-cuda # uninstall existing CUDA version
python setup_cuda.py install # install latest version
The above commands assume you have installed all dependencies for GPTQ-for-LLaMa and text-generation-webui. Please see their respective repositories for further information.
If you can't update GPTQ-for-LLaMa or don't want to, please use a compat.no-act-order.safetensor
file.
Original model card
llama-30b-sft-7:
dtype: fp16
log_dir: "llama_log_30b"
learning_rate: 1e-5
model_name: /home/ubuntu/Open-Assistant/model/model_training/.saved/llama-30b-super-pretrain/checkpoint-3500
#model_name: OpenAssistant/llama-30b-super-pretrain
output_dir: llama_model_30b
deepspeed_config: configs/zero3_config_sft.json
weight_decay: 0.0
residual_dropout: 0.0
max_length: 2048
use_flash_attention: true
warmup_steps: 20
gradient_checkpointing: true
gradient_accumulation_steps: 12
per_device_train_batch_size: 2
per_device_eval_batch_size: 3
eval_steps: 101
save_steps: 485
num_train_epochs: 4
save_total_limit: 3
use_custom_sampler: true
sort_by_length: false
#save_strategy: steps
save_strategy: epoch
datasets:
- oasst_export:
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz
val_split: 0.05
- vicuna:
val_split: 0.05
max_val_set: 800
fraction: 1.0
- dolly15k:
val_split: 0.05
max_val_set: 300
- grade_school_math_instructions:
val_split: 0.05
- code_alpaca:
val_split: 0.05
max_val_set: 250
- OASST dataset paper: https://arxiv.org/abs/2304.07327