|
--- |
|
license: other |
|
inference: false |
|
--- |
|
|
|
# OpenAssistant LLaMA 30B SFT 7 GPTQ |
|
|
|
This in a repo of GPTQ format 4bit quantised models for [OpenAssistant's LLaMA 30B SFT 7](https://huggingface.co/OpenAssistant/oasst-sft-7-llama-30b-xor). |
|
|
|
It is the result of merging the XORs from the above repo with the original Llama 30B weights, and then quantising to 4bit GPU inference using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa). |
|
|
|
This is epoch 7 of OpenAssistant's training of their Llama 30B model. |
|
|
|
**Please note that these models will need 24GB VRAM or greater to use effectively** |
|
|
|
## Repositories available |
|
|
|
* [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-GPTQ). |
|
* [4bit and 5bit GGML models for CPU inference](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-GGML). |
|
* [Unquantised 16bit model in HF format](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-HF). |
|
|
|
## PROMPT TEMPLATE |
|
|
|
This model requires the following prompt template: |
|
|
|
``` |
|
<|prompter|> prompt goes here |
|
<|assistant|>: |
|
``` |
|
|
|
## CHOICE OF MODELS |
|
|
|
Two sets of models are provided: |
|
|
|
* Groupsize = 1024 |
|
* Should work reliably in 24GB VRAM |
|
* Groupsize = 128 |
|
* Optimal setting for highest inference quality |
|
* But may require more than 24GB VRAM, depending on response length |
|
* In my testing it ran out of VRAM on a 24GB card around 1500 tokens returned. |
|
|
|
For each model, two versions are available: |
|
* `compat.no-act-order.safetensor` |
|
* Works with all versions of GPTQ-for-LLaMa, including the version in text-generation-webui one-click-installers |
|
* `latest.act-order.safetensors` |
|
* uses `--act-order` for higher inference quality |
|
* requires more recent GPTQ-for-LLaMa code, therefore will not currently work with one-click-installers |
|
|
|
## HOW TO CHOOSE YOUR MODEL |
|
|
|
I have used branches to separate the models: |
|
|
|
* Branch: **main** = groupsize 1024, `compat.no-act-order.safetensor` file |
|
* Branch: **1024-latest** = groupsize 1024, `latest.no-act-order.safetensor` file |
|
* Branch: **128-compat** = groupsize 128, `compat.no-act-order.safetensor` file |
|
* Branch: **128-latest** = groupsize 128, `latest.no-act-order.safetensor` file |
|
|
|
## How to easily download and run the 1024g compat model in text-generation-webui |
|
|
|
Load text-generation-webui as you normally do. |
|
|
|
1. Click the **Model tab**. |
|
2. Under **Download custom model or LoRA**, enter this repo name: `TheBloke/stable-vicuna-13B-GPTQ`. |
|
3. Click **Download**. |
|
4. Wait until it says it's finished downloading. |
|
5. As this is a GPTQ model, fill in the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = 128`, `model_type = Llama` |
|
6. Now click the **Refresh** icon next to **Model** in the top left. |
|
7. In the **Model drop-down**: choose this model: `stable-vicuna-13B-GPTQ`. |
|
8. Click **Reload the Model** in the top right. |
|
9. Once it says it's loaded, click the **Text Generation tab** and enter a prompt! |
|
|
|
## Manual instructions for `text-generation-webui` |
|
|
|
The `compat.no-act-order.safetensors` files can be loaded the same as any other GPTQ file, without requiring any updates to [oobaboogas text-generation-webui](https://github.com/oobabooga/text-generation-webui). |
|
|
|
[Instructions on using GPTQ 4bit files in text-generation-webui are here](https://github.com/oobabooga/text-generation-webui/wiki/GPTQ-models-\(4-bit-mode\)). |
|
|
|
The `latest.act-order.safetensors` files were created using `--act-order` to give the maximum possible quantisation quality, but this means it requires that the latest GPTQ-for-LLaMa is used inside the UI. |
|
|
|
If you want to use the act-order `safetensors` files and need to update the Triton branch of GPTQ-for-LLaMa, here are the commands I used to clone the Triton branch of GPTQ-for-LLaMa, clone text-generation-webui, and install GPTQ into the UI: |
|
``` |
|
# Clone text-generation-webui, if you don't already have it |
|
git clone https://github.com/oobabooga/text-generation-webui |
|
# Make a repositories directory |
|
mkdir text-generation-webui/repositories |
|
cd text-generation-webui/repositories |
|
# Clone the latest GPTQ-for-LLaMa code inside text-generation-webui |
|
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa |
|
``` |
|
|
|
Then install this model into `text-generation-webui/models` and launch the UI as follows: |
|
``` |
|
cd text-generation-webui |
|
python server.py --model OpenAssistant-SFT-7-Llama-30B-GPTQ --wbits 4 --groupsize 128 --model_type Llama # add any other command line args you want |
|
``` |
|
|
|
To update the CUDA branch of GPTQ-for-LLaMa, you can do the following. **This requires a C/C++ compiler and the CUDA toolkit installed!** |
|
``` |
|
# Clone text-generation-webui, if you don't already have it |
|
git clone https://github.com/oobabooga/text-generation-webui |
|
# Make a repositories directory |
|
mkdir text-generation-webui/repositories |
|
cd text-generation-webui/repositories |
|
# Clone the latest GPTQ-for-LLaMa code inside text-generation-webui |
|
git clone -b cuda https://github.com/qwopqwop200/GPTQ-for-LLaMa |
|
cd GPTQ-for-LLaMa |
|
pip uninstall quant-cuda # uninstall existing CUDA version |
|
python setup_cuda.py install # install latest version |
|
``` |
|
|
|
The above commands assume you have installed all dependencies for GPTQ-for-LLaMa and text-generation-webui. Please see their respective repositories for further information. |
|
|
|
If you can't update GPTQ-for-LLaMa or don't want to, please use a `compat.no-act-order.safetensor` file. |
|
|
|
# Original model card |
|
|
|
``` |
|
llama-30b-sft-7: |
|
dtype: fp16 |
|
log_dir: "llama_log_30b" |
|
learning_rate: 1e-5 |
|
model_name: /home/ubuntu/Open-Assistant/model/model_training/.saved/llama-30b-super-pretrain/checkpoint-3500 |
|
#model_name: OpenAssistant/llama-30b-super-pretrain |
|
output_dir: llama_model_30b |
|
deepspeed_config: configs/zero3_config_sft.json |
|
weight_decay: 0.0 |
|
residual_dropout: 0.0 |
|
max_length: 2048 |
|
use_flash_attention: true |
|
warmup_steps: 20 |
|
gradient_checkpointing: true |
|
gradient_accumulation_steps: 12 |
|
per_device_train_batch_size: 2 |
|
per_device_eval_batch_size: 3 |
|
eval_steps: 101 |
|
save_steps: 485 |
|
num_train_epochs: 4 |
|
save_total_limit: 3 |
|
use_custom_sampler: true |
|
sort_by_length: false |
|
#save_strategy: steps |
|
save_strategy: epoch |
|
datasets: |
|
- oasst_export: |
|
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk" |
|
input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz |
|
val_split: 0.05 |
|
- vicuna: |
|
val_split: 0.05 |
|
max_val_set: 800 |
|
fraction: 1.0 |
|
- dolly15k: |
|
val_split: 0.05 |
|
max_val_set: 300 |
|
- grade_school_math_instructions: |
|
val_split: 0.05 |
|
- code_alpaca: |
|
val_split: 0.05 |
|
max_val_set: 250 |
|
``` |
|
|
|
- **OASST dataset paper:** https://arxiv.org/abs/2304.07327 |