TheBloke's picture
Update README.md
81e2785
|
raw
history blame
6.69 kB
---
license: other
inference: false
---
# OpenAssistant LLaMA 30B SFT 7 GPTQ
This in a repo of GPTQ format 4bit quantised models for [OpenAssistant's LLaMA 30B SFT 7](https://huggingface.co/OpenAssistant/oasst-sft-7-llama-30b-xor).
It is the result of merging the XORs from the above repo with the original Llama 30B weights, and then quantising to 4bit GPU inference using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
This is epoch 7 of OpenAssistant's training of their Llama 30B model.
**Please note that these models will need 24GB VRAM or greater to use effectively**
## Repositories available
* [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-GPTQ).
* [4bit and 5bit GGML models for CPU inference](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-GGML).
* [Unquantised 16bit model in HF format](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-HF).
## PROMPT TEMPLATE
This model requires the following prompt template:
```
<|prompter|> prompt goes here
<|assistant|>:
```
## CHOICE OF MODELS
Two sets of models are provided:
* Groupsize = 1024
* Should work reliably in 24GB VRAM
* Groupsize = 128
* Optimal setting for highest inference quality
* But may require more than 24GB VRAM, depending on response length
* In my testing it ran out of VRAM on a 24GB card around 1500 tokens returned.
For each model, two versions are available:
* `compat.no-act-order.safetensor`
* Works with all versions of GPTQ-for-LLaMa, including the version in text-generation-webui one-click-installers
* `latest.act-order.safetensors`
* uses `--act-order` for higher inference quality
* requires more recent GPTQ-for-LLaMa code, therefore will not currently work with one-click-installers
## HOW TO CHOOSE YOUR MODEL
I have used branches to separate the models:
* Branch: **main** = groupsize 1024, `compat.no-act-order.safetensor` file
* Branch: **1024-latest** = groupsize 1024, `latest.no-act-order.safetensor` file
* Branch: **128-compat** = groupsize 128, `compat.no-act-order.safetensor` file
* Branch: **128-latest** = groupsize 128, `latest.no-act-order.safetensor` file
## How to easily download and run the 1024g compat model in text-generation-webui
Load text-generation-webui as you normally do.
1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter this repo name: `TheBloke/stable-vicuna-13B-GPTQ`.
3. Click **Download**.
4. Wait until it says it's finished downloading.
5. As this is a GPTQ model, fill in the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = 128`, `model_type = Llama`
6. Now click the **Refresh** icon next to **Model** in the top left.
7. In the **Model drop-down**: choose this model: `stable-vicuna-13B-GPTQ`.
8. Click **Reload the Model** in the top right.
9. Once it says it's loaded, click the **Text Generation tab** and enter a prompt!
## Manual instructions for `text-generation-webui`
The `compat.no-act-order.safetensors` files can be loaded the same as any other GPTQ file, without requiring any updates to [oobaboogas text-generation-webui](https://github.com/oobabooga/text-generation-webui).
[Instructions on using GPTQ 4bit files in text-generation-webui are here](https://github.com/oobabooga/text-generation-webui/wiki/GPTQ-models-\(4-bit-mode\)).
The `latest.act-order.safetensors` files were created using `--act-order` to give the maximum possible quantisation quality, but this means it requires that the latest GPTQ-for-LLaMa is used inside the UI.
If you want to use the act-order `safetensors` files and need to update the Triton branch of GPTQ-for-LLaMa, here are the commands I used to clone the Triton branch of GPTQ-for-LLaMa, clone text-generation-webui, and install GPTQ into the UI:
```
# Clone text-generation-webui, if you don't already have it
git clone https://github.com/oobabooga/text-generation-webui
# Make a repositories directory
mkdir text-generation-webui/repositories
cd text-generation-webui/repositories
# Clone the latest GPTQ-for-LLaMa code inside text-generation-webui
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa
```
Then install this model into `text-generation-webui/models` and launch the UI as follows:
```
cd text-generation-webui
python server.py --model OpenAssistant-SFT-7-Llama-30B-GPTQ --wbits 4 --groupsize 128 --model_type Llama # add any other command line args you want
```
To update the CUDA branch of GPTQ-for-LLaMa, you can do the following. **This requires a C/C++ compiler and the CUDA toolkit installed!**
```
# Clone text-generation-webui, if you don't already have it
git clone https://github.com/oobabooga/text-generation-webui
# Make a repositories directory
mkdir text-generation-webui/repositories
cd text-generation-webui/repositories
# Clone the latest GPTQ-for-LLaMa code inside text-generation-webui
git clone -b cuda https://github.com/qwopqwop200/GPTQ-for-LLaMa
cd GPTQ-for-LLaMa
pip uninstall quant-cuda # uninstall existing CUDA version
python setup_cuda.py install # install latest version
```
The above commands assume you have installed all dependencies for GPTQ-for-LLaMa and text-generation-webui. Please see their respective repositories for further information.
If you can't update GPTQ-for-LLaMa or don't want to, please use a `compat.no-act-order.safetensor` file.
# Original model card
```
llama-30b-sft-7:
dtype: fp16
log_dir: "llama_log_30b"
learning_rate: 1e-5
model_name: /home/ubuntu/Open-Assistant/model/model_training/.saved/llama-30b-super-pretrain/checkpoint-3500
#model_name: OpenAssistant/llama-30b-super-pretrain
output_dir: llama_model_30b
deepspeed_config: configs/zero3_config_sft.json
weight_decay: 0.0
residual_dropout: 0.0
max_length: 2048
use_flash_attention: true
warmup_steps: 20
gradient_checkpointing: true
gradient_accumulation_steps: 12
per_device_train_batch_size: 2
per_device_eval_batch_size: 3
eval_steps: 101
save_steps: 485
num_train_epochs: 4
save_total_limit: 3
use_custom_sampler: true
sort_by_length: false
#save_strategy: steps
save_strategy: epoch
datasets:
- oasst_export:
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz
val_split: 0.05
- vicuna:
val_split: 0.05
max_val_set: 800
fraction: 1.0
- dolly15k:
val_split: 0.05
max_val_set: 300
- grade_school_math_instructions:
val_split: 0.05
- code_alpaca:
val_split: 0.05
max_val_set: 250
```
- **OASST dataset paper:** https://arxiv.org/abs/2304.07327