Wiam's picture
End of training
a45504e verified
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distilhubert-finetuned-babycry-v6
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value:
              accuracy: 0.8260869565217391
          - name: F1
            type: f1
            value: 0.7474120082815735
          - name: Precision
            type: precision
            value: 0.6824196597353497
          - name: Recall
            type: recall
            value: 0.8260869565217391

distilhubert-finetuned-babycry-v6

This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6676
  • Accuracy: {'accuracy': 0.8260869565217391}
  • F1: 0.7474
  • Precision: 0.6824
  • Recall: 0.8261

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.7816 2.1739 25 0.7361 {'accuracy': 0.8260869565217391} 0.7474 0.6824 0.8261
0.7056 4.3478 50 0.6957 {'accuracy': 0.8260869565217391} 0.7474 0.6824 0.8261
0.6654 6.5217 75 0.6683 {'accuracy': 0.8260869565217391} 0.7474 0.6824 0.8261

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1