|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: ntu-spml/distilhubert |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: distilhubert-finetuned-babycry-v7 |
|
results: [] |
|
datasets: |
|
- Nooon/Donate_a_cry |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilhubert-finetuned-babycry-v7 |
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5864 |
|
- Accuracy: {'accuracy': 0.8695652173913043} |
|
- F1: 0.8089 |
|
- Precision: 0.7561 |
|
- Recall: 0.8696 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:------:|:----:|:---------------:|:--------------------------------:|:------:|:---------:|:------:| |
|
| 0.7417 | 0.5435 | 25 | 0.5925 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | |
|
| 0.7226 | 1.0870 | 50 | 0.6167 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | |
|
| 0.5606 | 1.6304 | 75 | 0.6808 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | |
|
| 0.8858 | 2.1739 | 100 | 0.5850 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | |
|
| 0.6573 | 2.7174 | 125 | 0.5968 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | |
|
| 0.7942 | 3.2609 | 150 | 0.6142 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | |
|
| 0.7497 | 3.8043 | 175 | 0.5915 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | |
|
| 0.7408 | 4.3478 | 200 | 0.5899 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | |
|
| 0.6499 | 4.8913 | 225 | 0.5989 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | |
|
| 0.6725 | 5.4348 | 250 | 0.5865 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | |
|
| 0.6797 | 5.9783 | 275 | 0.5852 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | |
|
| 0.6553 | 6.5217 | 300 | 0.5861 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | |
|
| 0.6535 | 7.0652 | 325 | 0.5863 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | |
|
| 0.7297 | 7.6087 | 350 | 0.5865 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Tokenizers 0.19.1 |