|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- gemma |
|
- trl |
|
base_model: unsloth/gemma-7b-bnb-4bit |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** Xhaheen |
|
- **License:** apache-2.0 |
|
- **Finetuned from model :** unsloth/gemma-7b-bnb-4bit |
|
|
|
This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
|
|
|
|
# Inference With Unsloth on colab |
|
|
|
|
|
```python3 |
|
|
|
|
|
import torch |
|
major_version, minor_version = torch.cuda.get_device_capability() |
|
|
|
|
|
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" |
|
if major_version >= 8: |
|
# Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40) |
|
!pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes |
|
else: |
|
# Use this for older GPUs (V100, Tesla T4, RTX 20xx) |
|
!pip install --no-deps xformers trl peft accelerate bitsandbytes |
|
pass |
|
|
|
|
|
|
|
from unsloth import FastLanguageModel |
|
import torch |
|
max_seq_length = 2048 |
|
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ |
|
load_in_4bit = False |
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name = "Xhaheen/Gemma_Urdu_Shaheen_1_epoch", |
|
max_seq_length = max_seq_length, |
|
dtype = dtype, |
|
load_in_4bit = load_in_4bit, |
|
device_map="auto" |
|
) |
|
FastLanguageModel.for_inference(model) # Enable native 2x faster inference |
|
|
|
input_prompt = """ |
|
### Instruction: |
|
{} |
|
|
|
### Input: |
|
{} |
|
|
|
### Response: |
|
{}""" |
|
|
|
input_text = input_prompt.format( |
|
"دیئے گئے موضوع کے بارے میں ایک مختصر پیراگراف لکھیں۔", # instruction |
|
"قابل تجدید توانائی کے استعمال کی اہمیت", # input |
|
"", # output - leave this blank for generation! |
|
) |
|
|
|
inputs = tokenizer([input_text], return_tensors = "pt").to("cuda") |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True) |
|
|
|
response = tokenizer.batch_decode(outputs) |
|
|
|
``` |
|
|
|
|
|
|
|
# Inference With Inference with HuggingFace transformers |
|
|
|
|
|
|
|
|
|
```python3 |
|
|
|
from peft import AutoPeftModelForCausalLM |
|
from transformers import AutoTokenizer |
|
|
|
model = AutoPeftModelForCausalLM.from_pretrained( |
|
"Xhaheen/Gemma_Urdu_Shaheen_1_epoch", |
|
load_in_4bit = False |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("Xhaheen/Gemma_Urdu_Shaheen_1_epoch") |
|
|
|
|
|
input_prompt = """ |
|
### Instruction: |
|
{} |
|
|
|
### Input: |
|
{} |
|
|
|
### Response: |
|
{}""" |
|
|
|
|
|
|
|
input_text = input_prompt.format( |
|
"دیئے گئے موضوع کے بارے میں ایک مختصر پیراگراف لکھیں۔", # instruction |
|
"قابل تجدید توانائی کے استعمال کی اہمیت", # input |
|
"", # output - leave this blank for generation! |
|
) |
|
|
|
inputs = tokenizer([input_text], return_tensors = "pt").to("cuda") |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True) |
|
response = tokenizer.batch_decode(outputs)[0] |
|
|
|
``` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|