metadata
language:
- de
WIP
(Please bear with me)
Hermes + Leo + German AWQ = Germeo
Germeo-7B-AWQ
A German-English language model merged from Hermeo-7B.
Model details
- Merged from: leo-mistral-hessianai-7b-chat and DPOpenHermes-7B-v2
- Model type: Causal decoder-only transformer language model
- Languages: German replies with English Understanding Capabilities
- Calibration Data: LeoLM/OpenSchnabeltier
Quantization Procedure and Use Case:
The speciality of this model is that it solely replies in German, independently from the system message or prompt. Within the AWQ-process I introduced OpenSchnabeltier as calibration data for the model to stress the importance of German Tokens.
Usage
# setup [autoawq](https://github.com/casper-hansen/AutoAWQ)
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
quant_path = "aari1995/germeo-7b-awq"
# Load model
model = AutoAWQForCausalLM.from_quantized(quant_path, fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True)
Inference:
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """\
<|system|>
You're a helpful assistant</s>
<|user|>
{prompt}</s>
<|assistant|>"""
prompt = "Schreibe eine Stellenanzeige für Data Scientist bei AXA!"
tokens = tokenizer(
prompt_template.format(prompt=prompt),
return_tensors='pt'
).input_ids.cuda()
# Generate output
generation_output = model.generate(
tokens,
streamer=streamer,
max_new_tokens=1012
)
# tokenizer.decode(generation_output.flatten())
Acknowledgements and Special Thanks
- Thank you malteos for hermeo, without this it would not be possible! (and all your other contributions)
- Thanks to the authors of the base models: Mistral, LAION, HessianAI, Open Access AI Collective, @teknium, @bjoernp
- Also @bjoernp thank you for your contribution and LeoLM for OpenSchnabeltier.
Evaluation and Benchmarks
TBA