|
---
|
|
license: apache-2.0
|
|
base_model: openai/whisper-base.en
|
|
tags:
|
|
- generated_from_trainer
|
|
metrics:
|
|
- wer
|
|
model-index:
|
|
- name: abbenedekwhisper-base.en-finetuning3-D3K
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# abbenedekwhisper-base.en-finetuning3-D3K
|
|
|
|
This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on the None dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 3.3880
|
|
- Cer: 68.1692
|
|
- Wer: 115.5629
|
|
- Ser: 100.0
|
|
- Cer Clean: 3.6171
|
|
- Wer Clean: 6.2914
|
|
- Ser Clean: 7.0175
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5e-08
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 64
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_steps: 10
|
|
- training_steps: 2000
|
|
- mixed_precision_training: Native AMP
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer | Ser | Cer Clean | Wer Clean | Ser Clean |
|
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:|:-----:|:---------:|:---------:|:---------:|
|
|
| 7.3491 | 1.06 | 200 | 6.1358 | 64.7746 | 122.5166 | 100.0 | 3.2832 | 5.6291 | 7.0175 |
|
|
| 6.162 | 2.13 | 400 | 5.2935 | 64.2181 | 119.8675 | 100.0 | 3.7284 | 6.6225 | 7.8947 |
|
|
| 5.3192 | 3.19 | 600 | 4.7534 | 64.6633 | 119.2053 | 100.0 | 3.5058 | 6.2914 | 7.0175 |
|
|
| 4.7266 | 4.26 | 800 | 4.3761 | 65.1085 | 118.2119 | 100.0 | 3.2832 | 5.9603 | 6.1404 |
|
|
| 4.2728 | 5.32 | 1000 | 4.0472 | 65.9432 | 117.2185 | 100.0 | 3.2276 | 5.9603 | 6.1404 |
|
|
| 3.9248 | 6.38 | 1200 | 3.7904 | 66.7223 | 116.2252 | 100.0 | 3.2276 | 5.9603 | 6.1404 |
|
|
| 3.6714 | 7.45 | 1400 | 3.6008 | 67.8909 | 117.2185 | 100.0 | 3.1720 | 5.9603 | 6.1404 |
|
|
| 3.499 | 8.51 | 1600 | 3.4790 | 69.0595 | 118.2119 | 100.0 | 3.1720 | 5.9603 | 6.1404 |
|
|
| 3.393 | 9.57 | 1800 | 3.4106 | 68.9482 | 117.5497 | 100.0 | 3.1720 | 5.9603 | 6.1404 |
|
|
| 3.3491 | 10.64 | 2000 | 3.3880 | 68.1692 | 115.5629 | 100.0 | 3.6171 | 6.2914 | 7.0175 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.39.3
|
|
- Pytorch 2.2.2+cu121
|
|
- Datasets 2.14.5
|
|
- Tokenizers 0.15.2
|
|
|