metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilhubert-HuBERT_Distilled
results: []
distilhubert-HuBERT_Distilled
This model is a fine-tuned version of ntu-spml/distilhubert on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2017
- Accuracy: 0.8174
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.4343 | 1.0 | 874 | 1.4833 | 0.5037 |
0.8613 | 2.0 | 1748 | 0.9254 | 0.7081 |
0.6081 | 3.0 | 2622 | 0.8306 | 0.7424 |
0.7287 | 4.0 | 3496 | 0.8770 | 0.7453 |
0.208 | 5.0 | 4370 | 0.8191 | 0.7831 |
0.1136 | 6.0 | 5244 | 0.9336 | 0.7894 |
0.094 | 7.0 | 6118 | 1.0803 | 0.7997 |
0.0007 | 8.0 | 6992 | 1.1537 | 0.8122 |
0.0649 | 9.0 | 7866 | 1.2157 | 0.8077 |
0.0003 | 10.0 | 8740 | 1.2017 | 0.8174 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3