|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:10K<n<100K |
|
- loss:SoftmaxLoss |
|
base_model: symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli |
|
widget: |
|
- source_sentence: كير في أمريكا |
|
sentences: |
|
- ترامب يؤثر على الثقافة الأمريكية |
|
- لم يكن هناك أي صراع مع أي شخص. |
|
- فأخذ زوجان ضد إرادتهما بسبب صراحتهما. |
|
- source_sentence: الفضائح ممتعة |
|
sentences: |
|
- الناس يحبون السماء الزرقاء. |
|
- قد يعتبر آخرون أنفسهم اشتراكيين. |
|
- سبرينغر ليست شعبية. |
|
- source_sentence: الجميع جائعون |
|
sentences: |
|
- كان الجميع يكذبون. |
|
- تم سؤال الخدمة عن الرئيس الميت. |
|
- ستار) قاوم الربط) |
|
- source_sentence: لونها طبيعي. |
|
sentences: |
|
- يبقيه غبي بسيط وسوف تبدو جيدة. |
|
- لا أحد يحمل براءة اختراع أبداً. |
|
- لم تكن محامية جيدة |
|
- source_sentence: لام هو محافظ. |
|
sentences: |
|
- هذا الرجل محافظ |
|
- على الأرجح أنها ستلتصق بحشواته |
|
- كانت كلماتها واضحة وموجزة. |
|
pipeline_tag: sentence-similarity |
|
--- |
|
|
|
# SentenceTransformer based on symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli](https://huggingface.co/symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli](https://huggingface.co/symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli) <!-- at revision 068f854a8bdff365072583e5fbba7a9c69bd8606 --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'لام هو محافظ.', |
|
'هذا الرجل محافظ', |
|
'على الأرجح أنها ستلتصق بحشواته', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 25,000 training samples |
|
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | premise | hypothesis | label | |
|
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 26 tokens</li><li>mean: 85.71 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.85 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>0: ~24.10%</li><li>1: ~32.80%</li><li>2: ~43.10%</li></ul> | |
|
* Samples: |
|
| premise | hypothesis | label | |
|
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------| |
|
| <code>Doom (منمنمة مثل DOOM) هي سلسلة من ألعاب الفيديو مطلق النار من منظور الشخص الأول التي طورتها id Software. تركز السلسلة على مآثر بحرية فضائية لم يكشف عن اسمها تعمل تحت رعاية شركة Union Aerospace Corporation (UAC) ، التي تحارب جحافل الشياطين والأجداد من أجل البقاء على قيد الحياة.</code> | <code>Doom هي أفضل لعبة مطلق النار الشخص الأول التي تم إنشاؤها</code> | <code>2</code> | |
|
| <code>قال مسؤولون أمريكيون إن المسؤولين العسكريين والاستخباراتيين الأمريكيين على خلاف حول اتجاه الحرب في أفغانستان ، مما يخلق مصدرًا جديدًا للاحتكاك حيث يسعى الرئيس ترامب وفريق الأمن القومي التابع له إلى إيجاد طريقة لإنهاء الصراع المستمر منذ 17 عامًا. لدى مسؤولي الاستخبارات وجهة نظر متشائمة للصراع ، وفقًا لأشخاص مطلعين على تقييم سري مستمر ، بينما يتحدى القادة العسكريون هذا الاستنتاج بحجة أن استراتيجية السيد ترامب في جنوب آسيا تعمل....</code> | <code>مسؤولون عسكريون واستخباراتيون أمريكيون يتفقون على الحرب في أفغانستان</code> | <code>0</code> | |
|
| <code>The Stranger Left No Card (1952) هو فيلم بريطاني قصير من إخراج ويندي توي. فاز الفيلم بجائزة أفضل خيال في مهرجان كان السينمائي 1953 ، حيث وصفه جان كوكتو بأنه "تحفة فنية". كان أول ظهور سينمائي للممثل آلان بادل.</code> | <code>ويندي توي تخرج من فيلم The Stranger Left No Card</code> | <code>2</code> | |
|
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 5,000 evaluation samples |
|
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | premise | hypothesis | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 32.77 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.72 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>0: ~34.90%</li><li>1: ~32.80%</li><li>2: ~32.30%</li></ul> | |
|
* Samples: |
|
| premise | hypothesis | label | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|:---------------| |
|
| <code>هل المشكلة الآن أكثر حدة؟</code> | <code>وقد تم بالفعل حل هذه المسألة.</code> | <code>0</code> | |
|
| <code>إن الخريطة التي تحتوي على ثقوب فيها هي تذكار لمعاهدة الاحترار العالمي وثغراتها التي يفترض أنها صارخة.</code> | <code>الثغرات في المعاهدة في معظمها لا يساء استخدامها.</code> | <code>2</code> | |
|
| <code>يغطي The Star اعتقال جورج مايكل لتعريض نفسه في غرفة رجال في حديقة ويل روجرز التذكارية في لوس أنجلوس كما لو كان يكتب مراجعة.</code> | <code>السيد (مايكل) سيحاكم</code> | <code>2</code> | |
|
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 32 |
|
- `gradient_accumulation_steps`: 2 |
|
- `learning_rate`: 2e-06 |
|
- `num_train_epochs`: 5 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `load_best_model_at_end`: True |
|
- `ddp_find_unused_parameters`: False |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 32 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 2 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-06 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: False |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | |
|
|:------:|:----:|:-------------:|:------:| |
|
| 0.0320 | 25 | 1.172 | - | |
|
| 0.0640 | 50 | 1.1839 | - | |
|
| 0.0960 | 75 | 1.1595 | - | |
|
| 0.1280 | 100 | 1.1516 | - | |
|
| 0.1599 | 125 | 1.1312 | - | |
|
| 0.1919 | 150 | 1.1458 | - | |
|
| 0.2239 | 175 | 1.1202 | - | |
|
| 0.2559 | 200 | 1.1113 | - | |
|
| 0.2879 | 225 | 1.0973 | - | |
|
| 0.3199 | 250 | 1.1004 | - | |
|
| 0.3519 | 275 | 1.0892 | - | |
|
| 0.3839 | 300 | 1.0708 | - | |
|
| 0.4159 | 325 | 1.0937 | - | |
|
| 0.4479 | 350 | 1.0698 | - | |
|
| 0.4798 | 375 | 1.0893 | - | |
|
| 0.5118 | 400 | 1.0597 | - | |
|
| 0.5438 | 425 | 1.0638 | - | |
|
| 0.5758 | 450 | 1.0524 | - | |
|
| 0.6078 | 475 | 1.0673 | - | |
|
| 0.6398 | 500 | 1.0619 | - | |
|
| 0.6718 | 525 | 1.0254 | - | |
|
| 0.7038 | 550 | 1.0423 | - | |
|
| 0.7358 | 575 | 1.0175 | - | |
|
| 0.7678 | 600 | 1.0365 | - | |
|
| 0.7997 | 625 | 1.0412 | - | |
|
| 0.8317 | 650 | 1.0411 | - | |
|
| 0.8637 | 675 | 1.0287 | - | |
|
| 0.8957 | 700 | 1.0318 | - | |
|
| 0.9277 | 725 | 1.0486 | - | |
|
| 0.9597 | 750 | 1.0237 | - | |
|
| 0.9917 | 775 | 1.0199 | - | |
|
| 0.9994 | 781 | - | 1.1031 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.31.0 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers and SoftmaxLoss |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |