metadata
library_name: transformers
base_model: huawei-noah/TinyBERT_General_4L_312D
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: TinyBERT-finetuned-NER
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.8117213736323259
- name: Recall
type: recall
value: 0.8382369392549502
- name: F1
type: f1
value: 0.8247660979636764
- name: Accuracy
type: accuracy
value: 0.9613166632246175
TinyBERT-finetuned-NER
This model is a fine-tuned version of huawei-noah/TinyBERT_General_4L_312D on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1547
- Precision: 0.8117
- Recall: 0.8382
- F1: 0.8248
- Accuracy: 0.9613
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.5069 | 1.0 | 878 | 0.2184 | 0.7396 | 0.7742 | 0.7565 | 0.9481 |
0.2068 | 2.0 | 1756 | 0.1667 | 0.8115 | 0.8201 | 0.8158 | 0.9593 |
0.166 | 3.0 | 2634 | 0.1547 | 0.8117 | 0.8382 | 0.8248 | 0.9613 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1