|
--- |
|
library_name: transformers |
|
base_model: huawei-noah/TinyBERT_General_4L_312D |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- conll2003 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: TinyBERT-finetuned-NER |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: conll2003 |
|
type: conll2003 |
|
config: conll2003 |
|
split: validation |
|
args: conll2003 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8117213736323259 |
|
- name: Recall |
|
type: recall |
|
value: 0.8382369392549502 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8247660979636764 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9613166632246175 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# TinyBERT-finetuned-NER |
|
|
|
This model is a fine-tuned version of [huawei-noah/TinyBERT_General_4L_312D](https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D) on the conll2003 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1547 |
|
- Precision: 0.8117 |
|
- Recall: 0.8382 |
|
- F1: 0.8248 |
|
- Accuracy: 0.9613 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.5069 | 1.0 | 878 | 0.2184 | 0.7396 | 0.7742 | 0.7565 | 0.9481 | |
|
| 0.2068 | 2.0 | 1756 | 0.1667 | 0.8115 | 0.8201 | 0.8158 | 0.9593 | |
|
| 0.166 | 3.0 | 2634 | 0.1547 | 0.8117 | 0.8382 | 0.8248 | 0.9613 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.5.0+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.19.1 |
|
|