metadata
language: de
license: mit
metrics:
- accuracy
model-index:
- name: GePaBERT
results: []
GePaBERT
This model is a fine-tuned version of deepset/gbert-large on a corpus of parliamentary speeches held in the German Bundestag. It was specifically designed for the KONVENS 2023 shared task on speaker attribution. It achieves the following results on the evaluation set:
- Loss: 0.7997
- Accuracy: 0.8020
Training and evaluation data
The corpus of parliamentary speeches covers speeches held in the German Bundestag during the 9th-20th legislative period, from 1980 to April 2023. (757 MB) The speeches were automatically prepared from the publicly available plenary protocols, using the extraction pipeline Open Discourse (GitHub code). Evaluation was done on a randomly-sampled 5% held-out dataset.
Training hyperparameters
The following hyperparameters were used during training:
learning_rate
: 2e-05train_batch_size
: 8optimizer
: Adam withbetas=(0.9,0.999)
andepsilon=1e-08
lr_scheduler_type
: linearnum_epochs
: 5
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
1.0697 | 0.1 | 3489 | 0.7697 | 0.9802 |
1.0339 | 0.2 | 6978 | 0.7727 | 0.9562 |
1.0203 | 0.3 | 10467 | 0.7739 | 0.9463 |
1.0215 | 0.4 | 13956 | 0.7743 | 0.9477 |
1.0046 | 0.5 | 17445 | 0.7779 | 0.9299 |
1.0036 | 0.6 | 20934 | 0.7764 | 0.9372 |
1.2439 | 0.7 | 24423 | 0.7352 | 1.2473 |
1.4382 | 0.8 | 27912 | 0.6947 | 1.5782 |
1.1744 | 0.9 | 31401 | 0.7764 | 0.9360 |
0.9718 | 1.0 | 34890 | 0.7799 | 0.9179 |
0.9557 | 1.1 | 38379 | 0.7824 | 0.9038 |
0.947 | 1.2 | 41868 | 0.7830 | 0.9000 |
0.9487 | 1.3 | 45357 | 0.7833 | 0.8982 |
0.9457 | 1.4 | 48846 | 0.7851 | 0.8862 |
0.9442 | 1.5 | 52335 | 0.7863 | 0.8839 |
0.9473 | 1.6 | 55824 | 0.7850 | 0.8855 |
0.9388 | 1.7 | 59313 | 0.7865 | 0.8771 |
0.9293 | 1.8 | 62802 | 0.7868 | 0.8805 |
0.9242 | 1.9 | 66291 | 0.7873 | 0.8738 |
0.9241 | 2.0 | 69780 | 0.7872 | 0.8757 |
0.9127 | 2.1 | 73269 | 0.7896 | 0.8641 |
0.9114 | 2.2 | 76758 | 0.7900 | 0.8627 |
0.9095 | 2.3 | 80247 | 0.7913 | 0.8540 |
0.9042 | 2.4 | 83736 | 0.7920 | 0.8518 |
0.8999 | 2.5 | 87225 | 0.7919 | 0.8514 |
0.899 | 2.6 | 90714 | 0.7918 | 0.8543 |
0.8945 | 2.7 | 94203 | 0.7935 | 0.8418 |
0.8867 | 2.8 | 97692 | 0.7934 | 0.8437 |
0.893 | 2.9 | 101181 | 0.7938 | 0.8414 |
0.8798 | 3.0 | 104670 | 0.7951 | 0.8359 |
0.868 | 3.1 | 108159 | 0.7943 | 0.8375 |
0.8736 | 3.2 | 111648 | 0.7956 | 0.8323 |
0.8756 | 3.3 | 115137 | 0.7959 | 0.8315 |
0.8681 | 3.4 | 118626 | 0.7964 | 0.8258 |
0.8726 | 3.5 | 122115 | 0.7966 | 0.8266 |
0.8594 | 3.6 | 125604 | 0.7967 | 0.8246 |
0.8515 | 3.7 | 129093 | 0.7973 | 0.8227 |
0.8568 | 3.8 | 132582 | 0.7979 | 0.8195 |
0.8626 | 3.9 | 136071 | 0.7983 | 0.8173 |
0.8585 | 4.0 | 139560 | 0.7978 | 0.8190 |
0.8497 | 4.1 | 143049 | 0.7991 | 0.8127 |
0.8383 | 4.2 | 146538 | 0.7992 | 0.8154 |
0.8457 | 4.3 | 150027 | 0.8002 | 0.8080 |
0.8353 | 4.4 | 153516 | 0.8005 | 0.8077 |
0.8393 | 4.5 | 157005 | 0.8009 | 0.8027 |
0.8417 | 4.6 | 160494 | 0.8050 | 0.8007 |
0.836 | 4.7 | 163983 | 0.8004 | 0.8017 |
0.8317 | 4.8 | 167472 | 0.7993 | 0.8021 |
0.832 | 4.9 | 170961 | 0.8011 | 0.8013 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3