|
--- |
|
language: de |
|
license: mit |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: GePaBERT |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# GePaBERT |
|
|
|
This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on a corpus of parliamentary speeches held in the German Bundestag. |
|
It was specifically designed for the KONVENS 2023 shared task on speaker attribution. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7997 |
|
- Accuracy: 0.8020 |
|
|
|
## Training and evaluation data |
|
|
|
The corpus of parliamentary speeches covers speeches held in the German Bundestag during the 9th-20th legislative period, from 1980 to April 2023. (757 MB) |
|
The speeches were automatically prepared from the publicly available [plenary protocols](https://www.bundestag.de/services/opendata), using the |
|
extraction pipeline [Open Discourse](https://opendiscourse.de) ([GitHub code](https://github.com/open-discourse/open-discourse)). |
|
Evaluation was done on a randomly-sampled 5% held-out dataset. |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- `learning_rate`: 2e-05 |
|
- `train_batch_size`: 8 |
|
- `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08` |
|
- `lr_scheduler_type`: linear |
|
- `num_epochs`: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Accuracy | Validation Loss | |
|
|:-------------:|:-----:|:------:|:--------:|:---------------:| |
|
| 1.0697 | 0.1 | 3489 | 0.7697 | 0.9802 | |
|
| 1.0339 | 0.2 | 6978 | 0.7727 | 0.9562 | |
|
| 1.0203 | 0.3 | 10467 | 0.7739 | 0.9463 | |
|
| 1.0215 | 0.4 | 13956 | 0.7743 | 0.9477 | |
|
| 1.0046 | 0.5 | 17445 | 0.7779 | 0.9299 | |
|
| 1.0036 | 0.6 | 20934 | 0.7764 | 0.9372 | |
|
| 1.2439 | 0.7 | 24423 | 0.7352 | 1.2473 | |
|
| 1.4382 | 0.8 | 27912 | 0.6947 | 1.5782 | |
|
| 1.1744 | 0.9 | 31401 | 0.7764 | 0.9360 | |
|
| 0.9718 | 1.0 | 34890 | 0.7799 | 0.9179 | |
|
| 0.9557 | 1.1 | 38379 | 0.7824 | 0.9038 | |
|
| 0.947 | 1.2 | 41868 | 0.7830 | 0.9000 | |
|
| 0.9487 | 1.3 | 45357 | 0.7833 | 0.8982 | |
|
| 0.9457 | 1.4 | 48846 | 0.7851 | 0.8862 | |
|
| 0.9442 | 1.5 | 52335 | 0.7863 | 0.8839 | |
|
| 0.9473 | 1.6 | 55824 | 0.7850 | 0.8855 | |
|
| 0.9388 | 1.7 | 59313 | 0.7865 | 0.8771 | |
|
| 0.9293 | 1.8 | 62802 | 0.7868 | 0.8805 | |
|
| 0.9242 | 1.9 | 66291 | 0.7873 | 0.8738 | |
|
| 0.9241 | 2.0 | 69780 | 0.7872 | 0.8757 | |
|
| 0.9127 | 2.1 | 73269 | 0.7896 | 0.8641 | |
|
| 0.9114 | 2.2 | 76758 | 0.7900 | 0.8627 | |
|
| 0.9095 | 2.3 | 80247 | 0.7913 | 0.8540 | |
|
| 0.9042 | 2.4 | 83736 | 0.7920 | 0.8518 | |
|
| 0.8999 | 2.5 | 87225 | 0.7919 | 0.8514 | |
|
| 0.899 | 2.6 | 90714 | 0.7918 | 0.8543 | |
|
| 0.8945 | 2.7 | 94203 | 0.7935 | 0.8418 | |
|
| 0.8867 | 2.8 | 97692 | 0.7934 | 0.8437 | |
|
| 0.893 | 2.9 | 101181 | 0.7938 | 0.8414 | |
|
| 0.8798 | 3.0 | 104670 | 0.7951 | 0.8359 | |
|
| 0.868 | 3.1 | 108159 | 0.7943 | 0.8375 | |
|
| 0.8736 | 3.2 | 111648 | 0.7956 | 0.8323 | |
|
| 0.8756 | 3.3 | 115137 | 0.7959 | 0.8315 | |
|
| 0.8681 | 3.4 | 118626 | 0.7964 | 0.8258 | |
|
| 0.8726 | 3.5 | 122115 | 0.7966 | 0.8266 | |
|
| 0.8594 | 3.6 | 125604 | 0.7967 | 0.8246 | |
|
| 0.8515 | 3.7 | 129093 | 0.7973 | 0.8227 | |
|
| 0.8568 | 3.8 | 132582 | 0.7979 | 0.8195 | |
|
| 0.8626 | 3.9 | 136071 | 0.7983 | 0.8173 | |
|
| 0.8585 | 4.0 | 139560 | 0.7978 | 0.8190 | |
|
| 0.8497 | 4.1 | 143049 | 0.7991 | 0.8127 | |
|
| 0.8383 | 4.2 | 146538 | 0.7992 | 0.8154 | |
|
| 0.8457 | 4.3 | 150027 | 0.8002 | 0.8080 | |
|
| 0.8353 | 4.4 | 153516 | 0.8005 | 0.8077 | |
|
| 0.8393 | 4.5 | 157005 | 0.8009 | 0.8027 | |
|
| 0.8417 | 4.6 | 160494 | 0.8050 | 0.8007 | |
|
| 0.836 | 4.7 | 163983 | 0.8004 | 0.8017 | |
|
| 0.8317 | 4.8 | 167472 | 0.7993 | 0.8021 | |
|
| 0.832 | 4.9 | 170961 | 0.8011 | 0.8013 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|